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Abstract—Deep Neural Networks (DNNs) are currently widely
used for high-stakes decision-making in the 5G-enabled Indus-
trial Internet of Things (IIoT) systems, such as controlling access
to high-security areas, autonomous driving, etc. Despite DNNs’
ability to provide fast, accurate predictions, previous work has
revealed that DNNs are vulnerable to backdoor attacks, which
cause models to perform abnormally on inputs with predefined
triggers. Backdoor triggers are difficult to detect because they
are intentionally made inconspicuous to human observers. Fur-
thermore, privacy protocols of DNNs in IIoT edges and rapidly-
changing ambient environments in 5G-enabled mobile edges raise
new challenges for building an effective backdoor detector in
5G-enabled IIoT systems. While there is ample literature on
backdoor detection, the implications of IIoT systems’ deployment
of DNNs to backdoor detection have yet to study. This paper
presents an adaptive, lightweight backdoor detector suitable
for being deployed on 5G-enabled IIoT edges. Our detector
leverages the frequency artifacts of backdoor triggers. Our model
can work without prior knowledge of the attack pattern and
model details upon successfully modeling the triggered sam-
ples in the frequency domain. Thus, prevent disrupting DNN’s
intellectual protocols in IIoT edges. We propose a supervised
framework that can automatically tailor the detector to the
changing environment. We propose to generate training data
for potentially unknown triggers by random perturbations. We
focus on DNN-based facial recognition as a concrete application
in 5G-enabled IIoT systems to evaluate our proposed framework
and experiment on three different optical environments for two
standard face datasets. Our results demonstrate that the proposed
framework can improve the previous detection method’s worst-
case detection rate by 74.33% and 84.40%, respectively, on the
PubFig dataset and the CelebA dataset under attack and target
model agnostic settings.

Index Terms—Deep Neural Networks, 5G-enabled IIoT Edge
Security, Backdoor Attack, Trigger Detection

I. INTRODUCTION

DEEP Neural Networks (DNNs) have enabled accurate
analytics in a wide range of 5G-enabled applications in

the Industrial Internet of Things (IIoT) systems, including au-
tonomous driving [1], network intrusion detection [2], passport
control [3], cloud monitoring [4], [5], and personal devices
authorization [6], [7], etc. As many of these applications
are high-stakes, there is a pressing need to understand the
performance of 5G IIoT-implemented DNNs in adversarial
contexts [8].

Previous research has shown that DNNs are vulnerable to
backdoor attacks. Such attacks can poison a DNN by inject-
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ing backdoors. Over clean samples, the poisoned model can
maintain state-of-the-art prediction accuracy. When backdoor
triggers are applied to clean inputs, the poisoned model will
output target labels specified by the adversary, jeopardizing
the integrity of systems that rely heavily on DNNs. These
attacks are particularly dangerous because they do not affect a
DNN’s behavior on typical, benign data. Backdoor attacks are
made more dangerous by the common practice of outsourcing
training or data collection to third parties. In the scenario of
outsourced model training, the attacker can directly provide a
poisoned model. In outsourced data collection, the attacker can
manipulate the training data so that the model derived from the
corrupted data responds abnormally to backdoor trigger inputs.
In both cases, the model user cannot recognize the existence
of the attack based on the predictions of clean samples.

Early backdoor triggers are designed to be small yet visible
patterns [9], [10]. Recent work has proposed more subtle ways
of generating imperceptible triggers, e.g., using patterns of
commonplace objects [10], injecting small noise [11], and
applying semantic transformation [12]). Multiple ways of
injecting a backdoor into a DNN model have been investigated
by prior work. The most standard practice is to poison the
training set with samples containing the trigger and target
labels. More advanced attack methods can poison the dataset
without modifying the original labels [13] or even bypass the
need of training the poisoned model from scratch [10]. The
wide variety of trigger patterns and generation and injection
techniques have made the detection of backdoor attacks diffi-
cult.

For 5G-enabled IIoT edge-deployed DNNs, backdoor de-
tection’s difficulty is aggravated by agnostic edge-deployed
DNN model details and fast evolution of the underlying data
distributions. Standard detection methods [14], [15] require
first identifying the backdoor or the trigger pattern and further
tuning the model parameters to mitigate the attack. Those
poisoned model or sample identifications/detections and the
tuning process require model details, which becoming unviable
at the 5G-enabled IIoT edges as most developed DNNs’ details
are not publicly available for intellectual property protection
reasons [16]. Meanwhile, the standard detection methods are
considered time-consuming for large models, even with 5G-
enabled clouds. Another thread of defense techniques is based
on pre-processing the inputs to the model [17], [18]. The pre-
processing steps are often applied in an agnostic way to the
actual model behavior; hence, if the model were clean, the
input pre-processing would lead to an unnecessary sacrifice
of model performance. Overall, the limitations from IIoT sys-
tems’ edges restrict the amount of available prior knowledge
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and the complexity for potential defense measures and calls
for a lightweight defense mechanism that can stay functional
under such a restricted environment.

Furthermore, as data distribution for 5G-enabled IIoT mo-
bile edge-deployed DNNs frequently evolves, it becomes nec-
essary to constantly fine-tune the deployed DNN model with
the most recent data samples to maintain model performance
[2], [19]. However, continuous fine-tuning at the same time
allows an attacker to inject new backdoors [20]. As a result,
backdoor detection must be adaptable and robust in the face
of unknown triggers. Despite the abundance of literature on
backdoor detection, a study focusing on the specific challenges
posed by 5G IIoT edge-deployed DNNs is still lacking.

This paper presents a lightweight, adaptive backdoor de-
tection technique designed specifically for 5G-enabled IIoT
edges. Existing backdoor triggers, according to our criti-
cal insight, exhibit severe frequency artifacts, making them
detectable with even simple models in attack- and model-
agnostic settings. Our contributions are listed below: 1) We
define four desirable backdoor detector properties for 5G IIoT
edge-deployed DNNs. 2) We propose a supervised learning
framework that automatically adapts the detector to changing
environments in two stages: pre-training and fine-tuning. We
demonstrate how, in order to pre-train the model, we can use
data that is not from the target distribution and still have the
model make predictions while maintaining detection efficacy.
We generate surrogate poison training data by simulating the
frequency artifacts of poisoned data with random perturba-
tions. 3) We focus on facial recognition as a concrete use case
for a 5G-enabled IIoT edge application and test the proposed
detector on two popular face datasets and three different
optical environments. The results show that our detector out-
performs the previous detection technique in attack and model
agnostic settings under varying environmental conditions.

The remainder of this paper is structured as follows: In
Section II, we present the background of backdoor attacks
and defenses and formalize the desirable properties of the
backdoor detector under 5G IIoT edge settings. In III, we
list existing backdoor defense methods, and analysis of each
defense’s suitability for deployment at 5G-enabled IIoT edged
nodes. Section IV describes our detection methodology as
well as analyses of how the proposed detector meets the
desirable properties in 5G IIoT edge poison detection. We
present the adaptability analysis and evaluation, comparison
of the proposed detector under 5G IIoT edge environment
constraints in Section V to analyze if the proposed detector
meets the desirable properties empirically. Finally, Section VI
concludes the paper.

II. BACKGROUND & PROBLEM FORMULATION

A. Backdoor Attacks

Backdoor attacks attempt to tamper with the integrity of
DNN models. The compromised model still has state-of-the-art
performance over clean samples. However, for input samples
containing the trigger, the model will predict wrong labels pre-
determined by the attacker. Formally, given a DNN model 5\
with parameters \, a backdoor attack can be formulated as

(Δ\, X), where Δ\ is the backdoor injected by the adversary
to the model parameters, and X is an attacker-specified trigger.
The backdoor model 5\+Δ\ exhibits the following behaviors:

5\+Δ\ (G) = 5\ (G),∀G ∈ X, (1)
5\+Δ\ (G + X) ≠ 5\+Δ\ (G),∀G ∈ X, (2)

Where G represents a clean sample, equation 1 shows that
the poisoned model has similar functionality to clean models.
Equation 2 shows that the poisoned model behaves badly when
the backdoor trigger is added.

The trigger needs to be added to targeted test samples during
the inference phase to launch a backdoor attack. There are
various designs of the backdoor triggers, which roughly can
be categorized into three categories. 1) Local patterns: The
most common approach is to inject a small visible pattern
into the clean image. For instance, [9] added a white square
onto the right bottom of the images as the trigger; [21]
used a colored square to activate the backdoor. Since these
patterns are generally small and placed at corners, they will not
affect an image’s semantics, although perceptible. 2) Global
patterns: Different from the local patterns, this type of trigger
is usually smeared across the entire image but dim in the
background. For instance, trojan watermarks are embedded in
the background of data samples [21]. Chen et al. [10] proposed
to blend a large trigger pattern into the original input. The
aforementioned trigger patterns are designed to be unrelated
to the semantics of the original data. 3) Semantic modifica-
tion: Prior work has also exploited commonplace objects as
backdoor attack triggers so that the poisoned samples look
inconspicuous even with manual inspections. For instance,
Chen et al. [10] designed a unique pair of glasses as the
trigger. [22] explored the possibility of using facial tattoos
and earrings as triggers. Recent work also leveraged GANs
to inject artificial facial features/expressions as the trigger
to activate the attack in facial recognition systems [12]. We
will consider all the mentioned categories of backdoor attack
triggers with a unified detection framework.

B. Threat Model

We consider the standard threat model of backdoor attacks
while considering the limitations of a 5G IIoT edge deploy-
ment: the user obtains a backdoored DNN model from an
untrusted third party or trains a DNN model using poisoned
datasets, and then deploys the model onto a 5G-enabled IIoT
edge system/nodes, such as a smart vehicle, smartphone, or
smart gateway. During inference, the adversary may query
the model with malicious samples containing the trigger,
causing the edge-deployed model to produce incorrect outputs.
From the defender’s perspective, we want to detect potential
backdoor samples as efficiently and robustly as possible. A
detector of this type can provide reliable information that can
alert the following security procedures, such as using other
detection methods for double-checking, removing malicious
samples, using defensive preprocessing to invalidate backdoor
triggers, and so on.
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C. Desirable Properties of Edge-Deployed Backdoor Detector
in 5G IIoT Systems

We now formally define the desirable properties that an
edge-deployed backdoor trigger detector should possess:
• Computational efficiency: Even with 5G cloud computing,

large-scale detection can be slow due to high local
computational costs [14], [23] or human supervision
requirements [14]. For effective detection end-to-end, the
detector should be lightweight in terms of low local
computational and storage requirements.

• Generalizability to different and unseen trigger types:
Backdoor triggers can of varying size and shape, even
can be injected using different approaches. Besides, since
the edge-deployed DNNs need continual fine-tuning to
maintain performance, the attacker can potentially inject
new triggers every time the model is fine-tuned. Hence,
the backdoor detector needs to be effective against various
unseen trigger types.

• Robustness to data distributional shift: The environmental
conditions (e.g., the distance and angle of the view-
ing camera and the brightness of the background) in
which the DNNs are deployed could constantly change;
therefore, the backdoor detector needs to be resistant to
potential data distributional shifts.

• Independence of target models: In practice, most DNNs
operate in a blackbox mode due to potential security con-
cerns. Following that, the detector’s development should
be independent of the downstream models.

III. RELATED WORK

Existing defense methods can be roughly divided into four
categories, namely backdoor detection, backdoor invalidation,
trigger invalidation, and trigger detection. We will analyze
each category’s limitation in 5G-enabled IIoT systems and
reinforce the motivation to introduce an attack and model
agnostic trigger detection framework specially designed for
5G-enabled IIoT edge-deployed DNN applications.
Backdoor detection. The most common backdoor defense
direction is to verify if a deep learning model has an injected
backdoor. [14] proposed to reconstruct the potential trigger
for each class and then verify whether a model is poisoned by
checking whether there exists a label with anomalous trigger
reconstruction. Reccent works build upon the idea of [14]
and attempt to improve it via using GANs [23], adopting
new regularization terms [24], utilizing Generative Distribution
Modeling [25], and adopting Artificial Brain Stimulation [26].

These detection methods require details of the DNN model,
thus running the evaluations to detect the backdoor’s existence.
However, most of the IIoT deployed DNNs are bought or
run by third parties, where details, i.e., model architecture,
training coefficients, weights, etc., are not reported, therefore,
making the proposed backdoor detection methods unfavorable
in IIoT edges. Even if some edges use public DNNs to provide
model details for such defenses, these detection methods often
incur high temporal costs for large models. At the core, they
require solving a large number of optimization problems, even
supported with 5G clouds. The time-consuming issue gets

even worse in the 5G-enabled mobile edge setting. In contrast
to one-time training of centralized DNNs, 5G-enabled edge-
deployed DNNs often require continual fine-tuning to adjust
to the changing environment. The attacker can insert new
triggers every time the model is fine-tuned, which, in turn,
necessitates the constant operation of the backdoor detector.
Hence, deploying the existing detectors, which are already
expensive for a single process, will be even more costly for
the edge setting. Most importantly, these defenses assume that
there is only one target label for all malicious samples (i.e.,
single-target attack). The detection becomes infeasible when
the adversary injects poisoned samples with multiple different
target labels (e.g., all-to-all case introduced in [9]). They also
assume the trigger has a small size and simple pattern and
does not apply to complex triggers such as global patterns.

Backdoor invalidation. This direction is to remove the poten-
tial backdoor from the model directly without any detection.
[27] proposed to use pruning and fine-tuning to mitigate the
backdoor. Yi et al. [17] proposed to use fine-tuning with
intense pre-processes inputs to invalidate the backdoor. How-
ever, these approaches also require knowledge of the target
DNN models. Meanwhile, they may reduce the accuracy over
clean samples, thus interfering with the main functionality of
a DNN. Moreover, this kind of defense is adopted without
knowledge of the attack activities’ existence; thus, they might
inducing unnecessary overhead for clean models.

Trigger invalidation. This direction is to directly invalidate
the effects of the triggers from the test samples. [18] proposed
to adopt common image transformations to pre-process input
such that the backdoor model will give correct results for both
benign and malicious samples. However, this simple approach
can only handle simple triggers but fail to defeat complex ones
(e.g., global patterns) as shown in previous work [17]. Like
the backdoor invalidation techniques, this kind of defense is
also conducted in a manner agnostic to the attack’s existence.
Hence, it can incur extra overhead for clean samples and
degrade model performance.

Trigger detection. This direction focuses on detecting the
samples that contain triggers. This type of defense directly
detects the attack’s existence, and therefore it will not incur
unnecessary model performance degradation when there is no
attack activity. Moreover, it is often cost-effective, thus suitable
for performing continual backdoor monitoring at the edge.
[28] discovered that normal and poisoned data yield different
features in the last hidden layer’s activations. [15] proposed
to classify benign and malicious samples based on their sig-
natures on the covariance matrix’s Eigen spectrum. However,
these detection works require the knowledge of the poisoned
model, thereby becoming inapplicable when the model details
are covered as in most IIoT edges. A recent work [29] by Du
et al. adopted the autoencoder to model normal data and then
detected abnormal training samples by filtering out samples
with large reconstruction loss. This method does not require
the knowledge of poisoned model parameters and thus is
directly comparable with our proposed detector. Hence, we
will use [29] as a baseline in our evaluation.
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IV. METHODOLOGY

A. Frequency Inspection

To develop a model-agnostic detector satisfying the pro-
posed properties, we must first find a precise and general
approach to model the poisons. Inspired by recent efforts on
detecting fake images in the frequency domain [30], [31],
we intend to examine backdoor samples at 5G IIoT edges
from the frequency perspective. We use the Discrete Cosine
Transform (DCT) to convert images to the frequency domain
as our first step of modeling the poisoned samples. DCT
represents an image as a sum of cosine functions of varying
magnitudes and frequencies. This paper uses the type-II 2D-
DCT, a standard transformation adopted in image compression
algorithms such as JPEG. The type-II 2D-DCT is given by a
function � : R# 1×# 2 → R# 1×# 2 that maps an image data{
6G,H

}
to its frequency representation

{
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1
4# and F(:) =

√
1

2# for : > 0. :G , :H , and
x, y are the coordinates of the frequency domain and image
domain respectively. Because the DCT function uses cosine
functions, the resulting matrix depends on the frequencies of
the horizontal, diagonal, and vertical axes. As a result, any
image with abrupt changes in adjacent image pixels would be
emphasized in the frequency domain.

We examine the DCT coefficients of existing backdoor
triggers and empirically find that the images corrupted by
the existing triggers exhibit significant-high-frequency compo-
nents compared to natural images. We use the PubFig dataset
[32] to visualize the frequency domain of natural data and data
with different backdoor triggers, and the results are depicted
in Fig. 1. We consider six different state-of-art backdoor trig-
gers, including BadNets white square trigger (BadNets) [9],
Trojan watermark (Troj WM) [21], Trojan square (Troj SQ)
[21], hello kitty blending trigger (Blend) [10], nature image
contains semantic information as the trigger (Nature) [10],
and GAN generated fake facial character as the trigger
(GAN tri) [12]. This set of triggers encompasses general ideas
of designing triggers in existing works: range from local and
smal scale patterns to larger ones, and patching visible patters
of commonplace objects or injecting inperceptable unrelated
characters. The heatmaps in Fig. 1 are generated by averaging
the DCT coefficients over 1000 samples.

Fig. 1 shows that even we depict the averaging frequency
results only using the relatively low-frequency slots (32× 32),
the frequency domain’s difference between poisoned data
and the clean samples is already evident. The intuition for
frequency-artifacts for different triggers is as follows: 1)
Local triggers: BadNets, Troj WM, Troj SQ, Nature attach
localized patterns to a clean image. Due to the duality of
image and frequency domain, local triggers have unlimited
bandwidth in the frequency domain and thus exhibit severe
high-frequency artifacts. 2) Glabl triggers: Blend attack blends
a global pattern into a clean image as the backdoor trigger.

As the global pattern is irrelevant to the clean image, the
blending operation makes pixel values in a local neighborhood
inconsistent, which shows up in the frequency domain as high-
frequency components. 3) GAN-based triggers: Previous work
suggested that the upsampling procedure in the GANs [30]
causes high-frequency artifacts in the GAN-generated images.
Given the severe artifacts of backdoor triggers in the frequency
domain, it is reasonable to expect that compared to the image
domain, performing detection in the frequency domain could
potentially lead to a simpler detection model design and higher
effectiveness. Next, we show how to leverage the frequency
artifacts to develop an efficient, effective backdoor detector.

B. Random Puturbation Approximating Frequency Artifacts

Directly modeling the poisoned samples in the frequency
domain using existing triggers might suffer from overfitting
and lose the adaptability to zero-day attacks or unseen patterns,
which will impair the second proposed property. We propose
instead to approximate the effect of backdoor triggers via
random perturbation. The randomly perturbed images can then
be utilized for training a detector that separates clean samples
from poisoned samples based on their DCT transformation.
Note that the triggers encountered during the inference phase
are not seen by the detector during training; hence, the
detection pipeline above is agnostic to attack details.

Specifically, we include six random perturbations to sim-
ulate the standard backdoor attack triggers’ injections (illus-
trated in Fig. 2): 1) random white block: patching a white
rectangle of arbitrary size onto a random location of the image;
2) random colored block: adding a rectangle of random size
and random value to a random place; 3) adding random Gaus-
sian noise; 4) random shadow: drawing random shadows of
arbitrary shape across the images; 5) random blend: randomly
selecting another sample from the dataset, multiplying it with
a small value, and patching with the current data; 6) Cycle
GAN: as GANs share a similar structure of adopting the
upsampling, we use a Cycle GAN to add artificial characters
to samples to simulate the frequency artifacts. These random
perturbations are chosen because they encompass the trigger
patching methods utilized in the standard backdoor attacks.
We can easily generalize the proposed framework to deal with
zero-day attacks by adding corresponding trigger patching
methods into the random perturbation library and updating the
approximation of poisoned samples in the frequency domain.

C. Detector Details

We use supervised learning to build a backdoor detector
based on the random perturbation-based approximation of the
poisoned examples. Based on Fig. 1, we have learned that the
lower frequency slots with 32 × 32 are sufficient to provide
distinguishable visual information to detect backdoors. Thus,
we employ a six-layer CNN with input space as small as
32 × 32 × 3 to accommodate the storage constraints of edge
systems/nodes, as illustrated in TABLE I. The detector only
has six convolutional layers and a maximum kernel size of
128. This network has 292,002 trainable parameters and takes
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Fig. 1: A side-by-side comparison in the frequency domain of clean samples vs. samples patched with triggers. The left-most heatmap
illustrates the mean lower frequency spectrums (32 × 32) of 1000 samples randomly chosen from the PubFig dataset. The rest images show
the mean frequency values of images patched with different backdoor attack triggers. All the frequency results are depicted from -4 to 4
using value clipping for better visualization.

Fig. 2: Visual examples of the random purturbations adopted in de-
veloping the detector. (a)-(f) are the perturbed results using different
approaches.

approximately 3 MB; thus, it can be efficiently stored and
transmitted between edge and cloud nodes.

Input (32 × 32 × 3)
Conv2d 3 × 3 (32 × 32 × 32)
Conv2d 3 × 3 (32 × 32 × 32)

Max-Pooling 2 × 2 (16 × 16 × 32)
Conv2d 3 × 3 (16 × 16 × 64)
Conv2d 3 × 3 (16 × 16 × 64)

Max-Pooling 2 × 2 (8 × 8 × 64)
Conv2d 3 × 3 (8 × 8 × 128)
Conv2d 3 × 3 (8 × 8 × 128)

Max-Pooling 2 × 2 (4 × 4 × 128)
Flatten (2048)

Dense (2)

TABLE I: The network architecture
of our six-layer CNN detector. We
report the size of each layer.

Training an effective de-
tector from scratch using
data from a rapidly chang-
ing environment is often
impractical due to limited
training data that can be
collected. Even with 5G,
we could incur high tem-
poral overhead if we had
to train the detection model
from scratch every time.
We propose to use trans-
fer learning to facilitate the
training process as inspired
by the classic observation
that clean data consistently exhibit a fast decaying frequency
spectrum where low-frequency components dominate, [33],
[34].

Our framework incorporates transfer learning in the follow-
ing ways: To create a pre-training dataset, we first collect clean
samples from public datasets. Then, we can acquire a dataset

with half clean samples and half random perturbed samples1.
We then train the preliminary detector using the pre-training
dataset’s DCT representation.

D. Framework Design

Fig. 3: Implementation details for the proposed framework in 5G
enabled IIoT edge DNN systems. In order to adapt to the current data
distribution, the adaptive detector starts with a pre-trained model. The
5G cloud then fine-tunes the detector. The fine-tuned model’s weight
is then sent back to the edged systems/nodes for detection.

Fig. 3 shows how is the proposed detector deployed on
5G IIoT edges. The framework has two stages. The first
stage is to fine-tune the detector to adapt to the current
environment. To do so, we collect 500 clean samples from
the current environment in our experiment as mentioned in
Section IV-B. The collected data is then sent to the 5G cloud
to obtain fine-tuned weights. This fine-tuning procedure can
be considered efficient as the tuning dataset only consists
of 1000 samples, and the whole process is done in the 5G
cloud. In our experiment, the proposed detector can finish
the 20 epochs of tuning within 10 seconds using one GTX
2080 GPU. Meanwhile, the detector itself is small (3 MB),
allowing for efficient weight/data exchange between nodes

1We did not deploy the GAN tri for the pre-training dataset, as this trigger
generation technique is not appliable to small-input-space.
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and the cloud, and only requires a small amount of local
storage. The fine-tuned model is used as the detector in step
2. This step is also efficient thanks to the small-sized detector
proposed in Section IV-C, as we observed that our detector
could parse 1000 samples in 0.6 seconds and achieve state-
of-the-art detection results. In comparison, Neuron Cleanse
[35] requires parsing all the training samples and class labels
before detecting the backdoor, which takes 0.5 to 2 hours to
finish detection. It is worth noting that the proposed framework
only used a limited amount of training data and computational
power. Thanks to transfer learning, even with limited local
resources, the detector should stay efficient and effective.

V. EVALUATION

A. Pre-training and Adaptability Analysis

The first step of the proposed framework, as illustrated in
SectionIV-D, is to acquire the pre-trained detector and adapt
it to the current environment. In this section, we first put the
proposed detector to the test and analyze its adaptability. In
our experiments, the pre-training data includes 89209 clean
samples from the Cifar10 dataset and the GTSRB [36] dataset
with a fixed input size of 32× 32× 3; we then train the model
over this dataset with 200 epochs using the Adam optimizer,
achieving final trining accuracy of 98.64%.

We then explore the adaptability of the detector trained
over the pre-training dataset on the PubFig dataset. Note that
the PubFig dataset is a face dataset, while the pre-training
data does not contain any face image. Since we use perfectly
balanced datasets for training and testing, we use overall
Accuracy (ACC) and Backdoor data Detection Rate (BDR) to
measure detection efficacy. All models except No Fine-tune are
obtained by fine-tuning/training over 1000 data in the current
environment (500 clean samples and 500 randomly perturbed
samples) for 20 epochs. The results are based on a test set
of 1000 data which consists of 500 unseen clean samples and
500 unseen samples patched with the trigger under evaluation.

TABLE II shows the results of the adaptability analysis.
We can see that a detector trained over irrelevant data can still
be effective. The pre-trained raw model can still effectively
detect some triggers (e.g., Troj SQ), indicating that frequency
features that can differentiate clean samples from poison sam-
ples are consistent across different datasets. The consistency
of frequency representation across natural data explains this
finding. Transfer learned models outperform the model trained
from scratch in detection rate in all the cases. We then freeze
certain layers to see how a detector can be better adjusted. The
detector with the last two convolutional layers and the fully
connected layer being fine-tuned reaches the highest BDR in
all fine-tuning settings, as shown in TABLE II. This effect
indicates that the CNN detector’s shallow layers contain the
most information about backdoors in frequency. The deeper
layers are more dependent on the optical environment. These
findings enabled us to train and acquire accurate detectors with
limited data and power. In the following experiments, we will
use this optimum tuning setting.
Remark 1: The proposed framwork is computationally
efficient and generalizable to unknown triggers.

B. Settings under 5G IIoT edge environments

We now evaluate the efficacy under 5G IIoT edge settings
with constraints: 1) The deployed environments are constantly
changing due to random perturbations caused by light and
motion blurs; 2) The deployed downstream models can have
a variety of structures, and some details of the deployed DNNs
are not revealed to users due to intellectual property concerns.

We consider three different environments for each dataset
to assess our proposed detector’s robustness in the constantly
changing environments. We simulate optical perturbations us-
ing the original datasets, random brightness datasets, and mo-
tion blurred datasets. Because the detector is model-agnostic,
we can use it in 5G edge DNN supply chains without changing
the experiment design regarding different downstream models.

Fig. 4: Visual examples of the evaluated cases. (a)-(c) are the different
environments over the PubFig dataset. (d)-(f) are the different envi-
ronments over the ClebaA dataset. (a) and (d) are two examples of the
original datasets. (b), (e) are the examples of a brighter environment
results. (c), (f) are the examples with a motion blurring environment.

The proposed framework is evaluated on two standard
facial recognition datasets as a concrete use case of 5G
IIoT edge DNNs, the PubFig dataset [32], and the CelebA
dataset [37]. For each dataset, the proposed detector uses
500 clean samples. We test the proposed detector’s robustness
to the three environmental conditions for each dataset. Our
evaluation includes six different settings, as shown in Fig. 4.
We compare our proposed detector to the autoencoder-based
detector [29], which uses the same attack and defense model.
We evaluate the proposed detector using ACC and BDR. The
BDR compares the two detectors’ efficacy across different
triggers under the same settings.

C. Experimental Results

TABLEs III and IV show the proposed detector’s perfor-
mance in three different optical environments on two datasets.
Directly deploying the pre-trained model can provide limited
detection efficacy over some attack triggers. However, the
pre-trained model is barely functional over GAN-generated
poisoned samples, with an overall ACC close to 50%. The
pre-trained model also has trouble detecting Blend triggers.
The reason is that we pre-train the model on data that share
disparate distribution with the target data. The random blend
procedure in the random perturbation step combines two
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Fine-tuned Layers
BadNets Troj WM Troj SQ Nature Blend Gan tri

ACC BDR ACC BDR ACC BDR ACC BDR ACC BDR ACC BDR

No Fine-tune 72.80 54.70 62.00 33.10 82.65 74.40 52.40 13.90 50.65 10.40 50.30 9.70
FC Layer 82.50 78.10 93.45 100 93.45 100 92.20 97.50 92.95 99.00 88.20 89.50
Last Conv + FC 87.35 81.10 96.80 100 96.80 100 95.25 96.90 95.65 97.70 89.00 84.40
Last 2 Covs + FC 85.55 93.30 91.90 100 91.90 100 91.90 100 91.45 99.10 89.85 95.90
Last 3 Covs + FC 85.55 77.50 96.80 100 96.80 100 95.45 97.30 95.45 97.30 86.55 79.50
Whole Network 84.60 78.00 95.60 100 95.60 100 94.50 97.80 94.95 98.70 88.30 85.40
From Scratch 51.30 19.20 66.20 19.20 56.40 19.20 54.50 19.20 73.10 19.20 56.70 32.60

TABLE II: Model adaptability study using the PubFig dataset. FC is the Fully Connected layer. We start the analysis from the pre-trained
model using public datasets. Then we gradually add more layers considered during fine-tuning. We also add a baseline group that trains the
model from scratch. All the evaluated models here, except the no fine-tune group, are all tuned with data in the current environment with
20 epochs. We present the detection ACC and BDR for each attack (%); the boled results are the largest BDR of all the experiments.

Environment
BadNets Troj WM Troj SQ Nature Blend Gan tri

ACC BDR ACC BDR ACC BDR ACC BDR ACC BDR ACC BDR

Original 72.80 54.70 62.00 33.10 82.65 74.40 52.40 13.90 50.65 10.40 50.30 9.70
Original after fine-tune 85.50 93.30 91.90 100 91.90 100 91.90 100 91.45 99.10 89.85 95.90
Brightness 68.00 42.60 60.60 27.80 79.30 65.20 53.00 12.60 50.30 7.20 50.00 6.60
Brightness after fine-tune 83.33 87.31 89.97 100 89.97 100 87.63 95.15 89.84 100 85.30 92.20
Motion 75.10 58.60 63.30 35.00 86.00 80.80 53.90 15.40 51.40 10.00 50.60 8.40
Motion after fine-tune 85.10 91.80 89.80 100 89.70 100 88.80 99.80 89.00 99.80 86.20 94.20

TABLE III: The results of the proposed detector on the PubFig dataset. We present the results over the three different optical environments,
namely the original PubFig dataset, the dataset with additional brightness, and the dataset with motion blurring. Each dataset used for
evaluation contains 500 clean samples and 500 samples patched with the evaluating trigger. We show the detection efficiency for each optical
environment before and after the fine-tuning procedure proposed in our framework.

Environment
BadNets Troj WM Troj SQ Nature Blend Gan tri

ACC BDR ACC BDR ACC BDR ACC BDR ACC BDR ACC BDR

Original 78.40 65.80 59.40 27.80 87.10 83.20 54.50 18.00 49.90 8.80 50.30 9.60
Original after fine-tune 86.40 91.20 90.80 100 90.60 99.60 89.90 98.20 84.50 87.40 83.10 84.60
Brightness 72.50 53.20 58.00 24.20 83.90 76.00 51.70 11.60 50.00 8.20 49.90 8.00
Brightness after fine-tune 84.80 88.00 90.80 100 90.60 99.60 87.20 92.80 85.70 89.80 84.10 84.63
Motion 81.20 70.80 61.20 32.00 89.10 87.80 51.90 12.00 49.50 7.60 48.90 7.40
Motion after fine-tune 84.00 87.00 91.60 100 89.80 99.40 87.20 92.60 83.40 89.60 82.30 93.40

TABLE IV: The results of the proposed detector on the CelebA dataset. We present the results over the three different optical environments,
the original CelebA dataset, the dataset with additional brightness, and the motion blurring dataset. Each dataset used for evaluation contains
500 clean samples and 500 samples patched with the evaluating trigger. We show the detection efficiency for each optical environment before
and after the fine-tuning procedure proposed in our framework.

images from the training dataset, thus, limiting generalization
to the current environment.

The fine-tuning procedure described in Section IV-D helps
the detector adapt to its current deployed environment. Pre-
and post-fine-tuning detector performance highlights the im-
portance of fine-tuning. Using the original pre-trained detector
has limited efficacy. However, by fine-tuning the detector for
20 epochs, it can be more adaptable to the current environment,
thereby increasing detection effectiveness. As suggested in
Section V-A, we only fine-tune the last two convolutional lay-
ers and the fully connected layer. As shown in TABLEs III and
IV, we can achieve satisfying detection efficacy over all the
evaluated cases with limited data and computational power.
Remark 2: The proposed framework is robust against vari-
ations in data distribution and natural optical perturbations
thanks to fine-tuning design.

Now, we compare the detection results with the existing
backdoor poisoned sample detection method based on the
autoencoder [29]. This method was chosen as a comparison be-
cause it can function in the same attack-agnostic settings as our
method without prior knowledge of the target model. As shown

Fig. 5: Comparison of BDR (%) over different environments on the
PubFig dataset. (a) are the results on the raw PubFig dataset; (b) are
results under the environment with changing of the brightness; (c)
are the results with motion blur purturbed PubFig data.
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in TABLEs III and IV, the proposed detector has a different
ACC over clean samples in different environments. The False
Positive rate (FP)2 is 16.2% over the original PubFig dataset.
In brighter conditions, the fine-tuned detector’s FP is 21.6%.
The FP for the environment with motion blur is 21%. On the
CelebA dataset, the FPs are 18.4%, 18.4%, and 22.04% for
the original, brighter, motion-blurred environments. To fairly
compare, we set the threshold in [29] for poison detection to
the same FP rate in each environment. The autoencoder is also
trained with the same amount of data (500 clean samples) and
experimental settings as the proposed detector.

Figure 5 depicts a comparison of the proposed framework
and the autoencoder detector using the PubFig dataset and
the same settings and FPs. As shown in Fig. 5, the proposed
detection framework outperforms the autoencoder detector on
the PubFig dataset for different triggers in different optical en-
vironments. In most cases, the proposed detector can maintain
a BDR of at least 90%. The detector’s BDR on the BadNets
is 87.31% in varying brightness settings, which is the only
trigger setting for the PubFig dataset that falls below 90%.
We hypothesize that the increased brightness makes the white
square triggers less visible, reducing detection efficacy.

In comparison to the autoencoder detector’s results, our
detector is consistently robust across different triggers. The
autoencoder detector, in particular, failed to recognize the sam-
ples patched with the GAN tri trigger. This is due to the fact
that the autoencoder detector only models clean samples in the
image domain. In the image domain, the difference between
GAN poisoned samples and clean samples is microscopic. In
contrast, our proposed frequency-based detector can achieve
a BDR of around 95% for all of the GAN tri evaluated
environments. It should be noted that the autoencoder detector
appears to be more effective with larger-size triggers, such
as Troj wm, Troj sq, and Nature triggers. Larger triggers
alter more pixels and cause a more noticeable difference
from clean data, making them easier to detect in the image
domain. As our proposed detector is based on the frequency
domain, even small triggers can cause large variations in the
frequency domain. As a result, for small triggers, our detector
outperforms the autoencoder-based approach on a large scale.

Fig. 6 compares results from the CelebA dataset in three
different environments. The detection efficacy is similar to
the PubFig dataset. We also see a small drop in detection
efficacy for most triggers compared to the PubFig dataset.
Moreover, the autoencoder performs slightly better than the
nature images in brighter and motion-blurring conditions.
However, as the results from BadNets, Blend, and GAN tri
show, the autoencoder appears insufficient to detect small
backdoor triggers. Overall, our proposed detector outperforms
the CelebA dataset in terms of robustness, detection rate, and
clean data recognition.

To evaluate a detector’s robustness to unseen triggers and
the varying environments, we use the worst-case detection
efficiency as the metric. We compare the worst-case BDR of
the two detectors over the two datasets with different optical

2FP describes the likelihood that a given classifier will classify a sample
that is not from the positive class as being from the positive class. [29] uses
FP as the threshold for detecting poisoned samples.

Fig. 6: Comparison of BDR (%) over different environments on the
CelebA dataset. (a) are the results on raw CelebA dataset; (b) are
results under the environment with changing of brightness; (c) are
results with motion blur purturbed CelebA data.

environments. The worst case of the proposed detector on the
PubFig dataset is detecting BadNets triggers in the brighter
environment, which has a BDR of 87.31%. The worst-case
BDR of the autoencoder detector is 10.00%, attained from the
detection results over the GAN tri poisoned samples generated
from the original PubFig data. As for the CelebA dataset
results, our detection framework’s worst-case BDR is 84.6%,
which is attained for detecting GAN tri generated from the
original CelebA data. The worst-case BDR of the autoencoder
is 2.6%, which is acquired from the results detecting GAN-
generated poisoned samples in the brighter environment. Over-
all, the proposed detector achieves a 74.33% higher worst-case
BDR than the autoencoder on the PubFig, an 84.40% higher
worst-case BDR on the CelebA dataset.
Remark 3: Our method outperforms the existing method in
model-independent settings in terms of average robustness
and worst-case efficacy.

VI. CONCLUSION & FUTURE WORK

We proposed an adaptive, lightweight backdoor trigger
detector that could be used to mitigate backdoor attacks
in 5G-enabled IIoT edge-deployed DNNs. We have made
our project open-source in order to encourage more people
to contribute to IIoT backdoor security in DNNs3. To the
best of our knowledge, this is the first study on backdoor
detection in 5G-enabled IIoT edge-deployed DNNs, a difficult
setting due to model detail constraints and rapidly changing
data distributions. We first proposed four desirable properties
for a backdoor detector under such settings. Based on the
desirable properties, we proposed using frequency inspection
to distinguish between clean and poisoned data. We used a
random perturbation procedure with six image transformations
to model the frequency artifacts of the poisoned data. Then, for
supervised learning backdoor detection, we proposed using a
six-layer CNN. To achieve good detection results with limited

3https://github.com/YiZeng623/Adaptive-5G-IIoT-Backdoor-Detection
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data and training rounds, we proposed using a pre-trained
model with 5G cloud fine-tuning. Finally, we evaluated the
proposed framework and summarized three Remarks that con-
cludes the detector meets all of the four proposed properties.
On two facial recognition datasets with three different optical
changes, our detector outperformed the previous method in the
same attacker and defender modes.

Using advanced modeling techniques in the frequency do-
main to help distinguish between clean and backdoor poisoned
samples is an exciting future direction. Following this spe-
cific direction, we hope to improve the proposed detector’s
efficiency with 5G-enabled IIoT systems. Examining adaptive
frequency inspection and modeling would also be essential.
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