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An Efficient Preprocessing-based Approach to
Mitigate Advanced Adversarial Attacks
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Abstract—Deep Neural Networks are well-known to be vulnerable to Adversarial Examples. Recently, advanced gradient-based
attacks were proposed (e.g., BPDA and EOT), which can significantly increase the difficulty and complexity of designing effective
defenses. In this paper, we present a study towards the opportunity of mitigating those powerful attacks with only pre-processing
operations. We make the following two contributions. First, we perform an in-depth analysis of those attacks and summarize three
fundamental properties that a good defense solution should have. Second, we design a lightweight preprocessing function with these
properties and the capability of preserving the model’s usability and robustness against these threats. Extensive evaluations indicate
that our solutions can effectively mitigate all existing standard and advanced attack techniques, and beat 11 state-of-the-art defense
solutions published in top-tier conferences over the past 2 years.

Index Terms—Adversarial Examples, Deep Learning, Adversarial Attacks, BPDA.

F

1 INTRODUCTION

Artificial Intelligence (AI), especially Deep Learning
(DL) has become the most important class of technologies
in the past decade. Recently, with the rapidly increasing
requirements for experimenting the DL applications such
as training or inference, cloud computing providers start
to provide DL-related computing as services. This Deep
Learning as a Service (DLaaS) can significantly improve the
usage of the end-users or small enterprises to train a DL
model or use existing DL models to inference. For instance,
Microsoft started to provide the inference as a service [1]
that can help users to use DL models with low latency
and cost. However, novel security issues are found in such
DLaaS scenarios that threaten the usage of the DLaaS.

Szegedy et al. [2] proposed the concept of Adversarial
Examples (AEs): with imperceptible modifications to the
input, the Deep Neural Network (DNN) model will be
fooled to give wrong prediction results. Since then, a huge
amount of research effort has been spent to enhance the
powers of the attacks, or mitigate the new attacks (Fig. 1).
This leads to an arms race between adversarial attacks and
defenses. Basically, the generation of AEs can be converted
into an optimization problem: searching for the minimal
perturbations that can cause the model to predict a wrong
label. Attackers used the gradient-based approaches to iden-
tify the optimal perturbations (e.g., FGSM [3], I-FGSM [4],
LBFGS [2], C&W [5]). To defeat those attacks, a lot of
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Fig. 1: The number of research papers published on Arxiv.org
about adversarial examples. Data source: [11].

defenses were proposed to obfuscate the gradients such as
making them shattered or stochastic [6], [7], [8], [9], [10].

Unfortunately, those gradient obfuscation-based de-
fenses were further broken by advanced attacks [12], [13].
Backward Pass Differentiable Approximation (BPDA) was intro-
duced to handle the shattered gradients by approximating
the gradients of non-differentiable functions. Expectation
over Transformation (EOT) was designed to deal with the
stochastic gradient by calculating the expectation of gra-
dients of random functions. These two attacks have suc-
cessfully defeated the previous defenses [12], and even new
defenses published after their disclosure was still proven to
be vulnerable to BPDA, EOT, or their combination [14].

The question we want to address is: is it possible to
continue the arms race by mitigating the aforementioned advanced
attacks with more robust defense solutions? This is a challeng-
ing task. First, these attacks assume very high adversarial
capabilities [14]: the attacker knows every detail of the
DL model and the potential defenses. This significantly
increases the difficulty of defense designs and invalidates
existing solutions that require hiding the model details or
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defense mechanisms. Second, BPDA and EOT target the
root causes of gradient obfuscation: the non-differentiable
operation can always be approximated, and the random
operation can be estimated by its expectation. It is indeed
difficult for the defender to bypass these assumptions while
still preserving model usability.

One possible defense strategy is adversarial training [4]:
we can keep generating adversarial examples from the
training-in-progress model using the Projected Gradient
Descent (PGD) attack technique, and augmenting them into
the training set to improve the model’s robustness. This
strategy is shown to be effective against different types of
adversarial attacks including BPDA and EOT. However, it
can bring a significant cost to perform adversarial training
with large-scale DNN models and datasets. So we are more
interested in an efficient method, which can be directly
applied to a given model without altering it. [15] proposed
a preprocessing-based solution: they tested 25 existing pre-
processing functions and placed them into 10 groups. For
each inference, an ensemble of 5∼10 functions is randomly
selected to transform the input before feeding it to the
target model. This strategy can mitigate a more sophisti-
cated BPDA, where the adversary attempts to use a neural
network to approximate the non-differentiable operations.

In this paper, we also focus on the preprocessing-based
defense to enhance the model’s robustness against all exist-
ing adversarial attacks. Different from [15], we aim to utilize
a single lightweight transformation function to preprocess
the input images. This is expected to significantly reduce the
computation cost and logic complexity for model inference,
which is critical when the task is deployed in resource-
constrained edge and IoT devices. To achieve this goal, we
make the following contributions.

First, we analyze the features and assumptions of dif-
ferent attacks and identify three properties for designing
a qualified preprocessing function g(·). The first one is
usability-preserving, which is to guarantee g(·) will not affect
the model performance on clean samples. The next two
properties are non-differentiability and non-approximation, to
enhance the model robustness against both standard and
advanced gradient-based attacks.

Second, we introduce a novel preprocessing function
that can meet the above properties. Our function consists of
two steps: (1) a DCT-based quantization is used to compress
the input images, which can achieve non-differentiability; (2) a
dropping-pixel strategy is further introduced to distort the
image via random pixel dropping and displacement. This
step can increase the difficulty and fidelity of approximation.
Both steps are usability-preserving, thus their integration will
cause a negligible impact on the model performance.

We conduct extensive experiments to show the effective-
ness of our solutions. It can constrain the attack success rate
under 7% even with 10000 rounds of BPDA+EOT attack
(dozens of GPU hours for 100 samples), which significantly
outperform 11 state-of-the-art gradient obfuscation defenses
published recently in top-tier conferences. To better pro-
mote this research direction, we release a toolkit online1,
including the implementation of our defense techniques,

1. https://github.com/YiZeng623/Advanced-Gradient-Obfuscating

a summary of other defense methods as well as various
adversarial attacks.

The roadmap of this paper is given as follows. In Sec-
tion 2, the research background including the basic attack
concept and development history is given. In Section 3,
we define the threat model and defense requirements. In
Section 4, the methodology insights are illustrated with
three specific properties. In Section 5, the practical defense
solution is presented. In Section 6, the extensive evaluation
is listed to show the effectiveness of our method. In Sec-
tion 8, we conclude our work.

2 BACKGROUNDS

2.1 Attack Concept and Scenarios
An adversary can add human-unnoticeable perturba-

tions on the original input to fool a DNN classifier. Formally,
the target DNN model is a mapping function f(·). Given a
clean input sample x, the corresponding AE is denoted as
x̃ = x+ δ where δ is the adversarial perturbation. Then AE
generation can be formulated as the optimization problem
in Equation 1a (targeted attack where l′ 6= f(x) is the
desired label set by the attacker) or Equation 1b (untargeted
attack).

min‖δ‖, s.t. f(x̃) = l′ (1a)
min‖δ‖, s.t. f(x̃) 6= f(x) (1b)

Generally, there are two attack scenarios [16], deter-
mined by the adversary’s knowledge about the target sys-
tem. (1) White-box scenario: the adversary knows every detail
about the neural network model including the architecture
and all the parameters. He is also aware of the defense
mechanism and the corresponding parameters. (2) Black-box
scenario: the adversary does not have any knowledge about
the victim system. In addition to these two scenarios, there
are also some works [7] assuming the adversary knows all
details about the model but not the defense mechanism.
It is not quite realistic and reasonable to hold the defense
secret, as “this widely held principle is known in the field of
security as Kerckhoffs’ principle.” [16]. So we exclude this
scenario in this paper.

2.2 Development History
Round 1: attack. As the first study, Szefedt et al. [2] adopted
the L-BFGS algorithm to solve the optimization problem of
AE generation. Shortly after this work, a couple of gradient-
based methods were introduced to enhance the attack tech-
niques: the gradient descent evasion attack [17] calculated
the gradients of neural networks to generate AEs; Fast
Gradient Sign Method (FGSM) [3] calculated the adversarial
perturbation based on the sign of gradients, which was
further improved by its iterative versions (I-FGSM [4] and
MI-FGSM [18]). Deepfool [19] is another iterative method
that outperforms previous attacks by searching for the opti-
mal perturbation across the decision boundary. Meanwhile,
some other techniques were proposed to increase the attack
efficiency: Jacobian-based Saliency Map Attack (JSMA) [20]
estimated the saliency map of pixels w.r.t the classification
output, and only modified the most salient pixels. One pixel
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attack [21] is an extreme-case attack where only one pixel
can be modified to fool the classifier.
Round 2: defense. With the advance of adversarial attacks,
defense solutions were proposed to increase the robustness
of DNN models. They can be classified into three categories.
The first direction is adversarial training [4], [22], [23],
where AEs are used with normal examples together to train
DNN models to recognize and correct malicious samples.
The second direction is to train other models to assist the
target one. Magnet [24] used detector networks to identify
AEs by approximating the manifold of normal examples.
Generative Adversarial Trainer [25] utilized training target
networks along with a generative network to generate ad-
versarial perturbation for the target model to distinguish.
The third direction is to design AE-aware network archi-
tecture or loss function. Deep Contractive Networks [26]
added a contractive penalty to alleviate the effects of AEs.
Input Gradient Regularization [27] countered AEs by penal-
izing the degree of variations of input perturbations on the
output. Defensive distillation [28] generated soft training
labels from one network and retrained a second network
with higher robustness. This method claimed to have very
high resistance against AEs and was one of the strongest
defenses at that time.
Round 3: attack. A more powerful attack, C&W [5], was
proposed by updating the objective function to minimize lp
distance between AEs and normal examples. C&W can ef-
fectively defeat Defensive Distillation [5] and other defenses
with assisted models [29] with high attack success rates.
Round 4: defense. Since then, new defense strategies were
introduced to increase the difficulty of AE generations by
obfuscating the gradients. Five input transformations were
tested to counter AEs in [6], including image cropping
and rescaling, bit-depth reduction, JPEG compression, total
variance minimization (TV), and image quilting. Prakash
et al. [7] designed Pixel Deflection (PD), which randomly
redistributes a small number of pixels as artificial pertur-
bation and applies wavelet-based denoising to remove both
artificial and adversarial perturbation. Xie et al. [8] proposed
to use a randomization layer to randomly rescale the input
image with zero-paddings. Buckman et al. [9] introduced
Thermometer encoding, which encodes input images with
discrete values to prevent the direct calculation of gradient
descent during AE generation. Das et al. [30] proposed
SHIELD that compresses different regions of an image with
random compression levels to mitigate AE perturbations.
Those solutions are effective against all prior attacks.
Round 5: attack. To particularly target the gradi-
ent obfuscation-based defenses, two more advanced at-
tacks were introduced. BPDA [12] copes with the non-
differentiable obfuscation operation by approximating the
gradients during back-propagation. EOT [31] deals with
the randomization obfuscation operation by averaging the
gradients of multiple sessions. More detailed descriptions
about BPDA and EOT can be found in Section 4. After
the disclosure of these two attacks, a large number of
defense works have been published. Unfortunately, most
of them did not consider or incorrectly evaluate these two
attacks, and some representative solutions have been ana-
lyzed and proved to be incapable of defeating BPDA and
EOT attacks [14]. Up to now, there are still no effective

preprocessing-based defenses. This is what we aim to ad-
dress in this paper.

3 THREAT MODEL AND DEFENSE REQUIREMENTS

It is necessary to specify the adversarial capabilities and
defense requirements in our consideration as follows.

3.1 Threat Model
Adversarial Goals. There are two main types of adversarial
attacks: untargeted attacks that try to mislead the DNN
models to an arbitrary label different from the correct one,
and targeted attacks which succeed only when the DNN
model predicts the input as one specific label set by the
adversary [5]. In this paper, we focus on evaluating the
targeted attacks. The untargeted attacks can be mitigated
in a similar way.
Adversary’s Knowledge. We consider a white-box scenario,
where the adversary has full knowledge of the DNN model,
including the network architecture, exact values of param-
eters, and hyper-parameters. We further assume that the
adversary has full knowledge of the proposed defense,
including the algorithms and parameters. For the defenses
employing randomization techniques, we assume the ran-
dom numbers generated in real-time are perfect with a large
entropy such that the adversary cannot obtain or guess the
correct values.

It is worth noting that this white-box scenario represents
the strongest adversaries. Under such a scenario, a big num-
ber of existing state-of-the-art defenses are invalidated as
shown in [14]. This also significantly increases the difficulty
of defense designs.
Adversarial Capabilities. The adversary is outside of the
DNN classification system, and he is not able to compromise
the inference computation or the DNN model parameters
(e.g., via fault injection to cause bit-flips [32] or backdoor at-
tacks [33]). All he can do is to manipulate the input data with
imperceptible perturbations. In the context of computer
vision tasks, he can directly modify the input image pixel
values within a certain range. We use l∞ and l2 distortion
metrics to measure the scale of added perturbations: we
only allow the generated AEs to have either a maximum
l∞ distance of 8/255 or a maximum l2 distance of 0.05 [12].

3.2 Defense Requirements
Based on the above threat model, we list a couple of

requirements for a good defense solution:
First, there should be no modifications to the original

DNN model, e.g., retraining a model with different struc-
tures [28] or datasets [34]. We set this requirement for two
reasons. (1) Model retraining can significantly increase the
computation cost, especially for large-scale DNN models
(e.g. ImageNet scale [35]). (2) Those defense methods lack
generality to cover various types of attacks. They “explicitly
set out to be robust against one specific threat model” [16].

Second, we consider adding a preprocessing function
over the input samples before feeding them into the DNN
models. Such preprocessing operation can either remove the
effects of adversarial perturbations on the inference or make
it infeasible for the adversary to generate AEs adaptively,
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even he knows every detail of the operation. This function
should be general-purpose and applicable to various types
of data and DNN models of similar tasks.

Third, this preprocessing function should be lightweight
with negligible computation cost to the inference pipeline.
Besides, it should also preserve the usability of the original
model without decreasing its prediction accuracy. Input
preprocessing can introduce a trade-off between security
and usability: the side effect of correcting the adversar-
ial examples can also alter the prediction results of clean
samples. A qualified operation should balance this trade-
off with maximum impact on the adversarial samples and
minimal impact on the clean ones.

4 METHODOLOGY INSIGHTS

We aim to design a preprocessing function g(·), which
transforms an input image x ∈ X to an output with
the same dimension. Then given a DNN model f(·), the
inference process becomes y = f(g(x)). This function g(·)
needs to mitigate the adversarial attacks within the threat
model and satisfy the defense requirements, as described
in the previous section. We identify some properties and
design philosophy of a good methodology in this section
and give a specific algorithm in the next section.

4.1 Methodology Presentation
This preprocessing function must preserve the usability

of the target model, i.e., exerting minimal influence on the
accuracy of clean samples. This gives the first property:
Property 1. (Usability-preserving) g(·) cannot affect the pre-

diction results of clean input: f(g(x)) ≈ f(x), ∀x ∈ X .

Second, as most of the attacks generate adversarial ex-
amples by calculating the gradients of the model param-
eters. When a preprocessing function is introduced, this
calculation becomes: 5xf(g(x)) = 5xf(x) 5x g(x). So
a common approach is shattered gradient-based defense,
where the preprocessing operation g(·) is designed to be
non-differentiable. With this property, the adversary is not
able to craft AEs based on the gradient of the model using
standard methods (e.g., FGSM, C&W, Deepfool, etc.).
Property 2. (Non-differentiability) g(·) is non-differentiable,

i.e., it is hard to compute an analytical solution for
5xg(x).

It is interesting to note that this property can defeat the
advanced EOT attack [12] as well. This attack was proposed
to invalidate the defense solutions based on model in-
put randomization, by statistically computing the gradients
over the expected transformation of the input x. Formally,
for a preprocessing function g(·) that randomly transforms
x from a distribution of transformations T , EOT optimizes
the expectation over the transformation with respect to
the input by: 5xEt∼T f(g(x)) = Et∼T 5x f(g(x)). EOT
can help to get a proper expectation with samples at each
gradient descent step. However, if g(·) is non-differentiable,
the adversary cannot calculate the gradient expectation to
generate AEs either.

A function g(·) with the non-differentiability prop-
erty can still be vulnerable to sophisticated attacks, e.g.,

BPDA [12], where the adversary can approximate g(·) with a
differentiable function g′(x). For instance, in the experimen-
tation of the initial BPDA attack [12], the adversary used
g′(x) = x as an approximation to calculate the gradient
of g(x). He keeps g(·) on the forward pass and replaces it
with x on the backward pass. The derivative of the g(·) will
be approximated as the derivative of the identity function,
which is 1. In [15], neural nets were further trained to
approximate non-differentiable functions, which can defeat
a wider range of shattered gradient-based defenses than the
identity function. To mitigate such threats, the preprcessing
function must meet the following property:
Property 3. (Non-approximation) It is difficult to find

a differentiable g′(x) that can approximate the non-
differentiable preprocessing function g(x) when calcu-
lating its gradients, i.e., 5xg

′(x) ≈ 5xg(x).

A common strategy to reduce the possibility and fidelity
of approximating a non-differentiable function is to add ran-
domization in the operation. If the degree of randomization
is large enough, then it will be difficult for the adversary
to find a qualified deterministic differentiable function for
replacement, even using neural networks. However, a high
random transformation can also affect the model’s usability
(Property 1). So the key to the design of this function
g(·) is to balance the trade-off between Properties 1 and 3
with a random non-differentiable operation. Past work [15]
adopted an ensemble of dozens of weak preprocessing func-
tions to defend against BPDA, making the entire inference
system quite complex. In this paper, we aim to simplify this
by designing one single function to achieve the same goal.

4.2 Methodology Summary
A preprocessing function g(·) that can meet the above

three properties can effectively increase the DNN model’s
robustness against existing adversarial attacks. Specifically,
for standard gradient-based attacks (FGSM, C&W, LBFGS,
Deepfool), non-differentiability in Property 2 can prohibit
the direct calculation of gradients, and the randomization
employed in Property 3 can obfuscate the gradient values.
A function with these two properties can provide higher
robustness against these standard attacks.

For those advanced attacks, the gradient expectation
attack (EOT) can be mitigated by Property 2. If a qualified
function with Property 3 is identified, the adversary may
have difficulty in discovering a replacement that can accu-
rately approximate this function. Then gradient approxima-
tion attack (BPDA) becomes infeasible or at least requires
a much higher cost. The combination of these two attacks
cannot compromise the model’s robustness either.

5 OUR PROPOSED SOLUTION

5.1 Overview
Our proposed function g(·) involves two critical steps

to process the input images. The first step (Step 1 in Algo-
rithm 1) adopts a DCT-based defensive quantization. Based
on [36], we further improve the quantization table to better
adapt to the machine’s visionary behavior. This can real-
ize the non-differentiability property while preserving the
model’s usability. The second step (Step 2 in Algorithm 1)

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 25,2021 at 03:38:56 UTC from IEEE Xplore.  Restrictions apply. 



0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3076826, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS 5

ALGORITHM 1: Defense preprocessing function

Input: original image I ∈ Rh×w

Output: processed image I ′ ∈ Rh×w

Parameters: defensive quantization table Q, distortion
limit δ ∈ [0, 1], size of grid d.

1 x0 = 0, y0 = 0;
2 nw = w/d, nh = h/d;
3 GI = {(xm, yn)|(m,n) ∈ {(0, ..., nw)× (0, ..., nh)}};

/* Step 1: DTC-based Quantization */

4 Set defensive quantization table Q.

5 for (xm, yn) in GI{(x0, y0)} do
6 dct = DCT (I(xm−1 : xm, yn−1 : yn));
7 dctq = Quantization(dct,Q);
8 dctd = Dequantization(dctq, Q);
9 Iq(xm−1 : xm, yn−1 : yn) = IDCT (dctd);

10 end

/* Step 2: Image Distortion */

11 Set random distortion limit δ ∈ [0, 1].
12 Set random size of grid d.

13 I ′= ImageDistortion(I , d, δ);

14 return I ′;

is inspired by a dropping-pixel strategy [6], [8]. We propose
a novel technique to distort images by dropping randomly
selected pixels of input images and displacing each pixel
away from the original coordinates. Our proposed tech-
nique can generate highly randomized preprocessed images
while keeping a high accuracy for DNN inference.

5.2 Step 1: DCT-based Quantization

The first step is described in Lines 4-9 in Algorithm 1.
The input image is cut into grids of pixels with the size
of the grid d. Pixels in each grid are transformed into the
frequency space via Discrete Cosine Transform (DCT) [37]
as shown. Here we use a 2D-DCT with a grid size of 8 × 8.
A defensive quantization table Q is then used to quantize
all the frequency coefficients. These DCT coefficients are
further de-quantized and transformed back into the spatial
space with an inverse DCT.

The critical factor in this step is the quantization table Q.
[38] directly used the JPEG quantization tableQ50 to remove
the adversarial perturbations. This was proved ineffective as
the JPEG quantization table was designed to compress the
image based on the sensitivity of the human visual system.
Later on, more effective approaches were proposed to miti-
gate certain adversarial attacks with randomized quantiza-
tion tables [30] or a dedicated quantization table [36]. Such
quantization techniques are proved to have better defense
performance on AEs than directly deploying the JPEG quan-
tization table Q50. For an attacker, to defeat quantization-
based defense, the adversarial perturbation on pixel values
must be large enough to influence the quantization results.
Therefore, the motivation of deploying quantization is to
use such a non-differentiable function to increase the diffi-
culty for generating AEs within a l2 bound.

In our solution, we introduce a novel and more effec-
tive way to generate the quantization table, as shown in
Algorithm 2. We generate our new quantization table Q in a

ALGORITHM 2: Generating quantization table Q

Input: clean set In ∈ Rn×h×w×3,
adversarial set İn ∈ Rn×h×w×3,
Output: defensive quantization table Q

1 Q0 = O8×8; /* Generating a zero matrix of size 8× 8. */
2 for Ii in In do
3 for Ii,channel in Ii do
4 x0 = 0, y0 = 0;
5 nw = w/8, nh = h/8;
6 GI i = {(xm, yn)|(m,n) ∈

{(0, ..., nw)× (0, ..., nh)}};
7 for (xm, yn) in GI i{(x0, y0)} do
8 dctI = DCT (Ii,channel(xm−1 : xm, yn−1 :

yn));
9 dctAdv = DCT (İi,channel(xm−1 : xm, yn−1 :

yn));
10 difmat = |dctI − dctAdv|;

xQ, yQ = argmax(difmat);
11 Q0(xQ, yQ)+ = 1;
12 end
13 end
14 end
15 Q = (Q0/max(Q0))× 80 + 20;
16 return Q;

statistical learning manner by summarizing the patterns of
the AEs. Here we use the C&W attack method to generate
the corresponding AE set (using different AE generation
methods will lead to similar results). In the algorithm,
first, all the 8 × 8 blocks in the spatial domain (I in Line
8) are collected from all the images’ color channels for
both the clean image set and the AE set (İ in Line 9). By
conducting DCT on all the 8 × 8 small blocks, we compare
the difference of DCT frequency coefficients (Line 10) to
statistically understand the difference brought by such AE
attacks. This difference is presented as the coordinates of
the particular frequency coefficients which have the most
significant changes. We design our quantization table Q by
such a statistical calculation.

Fig. 2: Frequency space statistical results of AEs (a) and the
defensive quantization table (b).

The statistical results of the spatial domain of the AEs
with our DCT-based quantization are given in Fig. 2 (a). We
can observe that the DC coefficients on the up-left corner
are always significantly changed, and low frequencies are
relatively changed more than high frequencies. The quan-
tization table is then designed according to such statistics
with the principle that the frequencies that are changed
more often with larger values are sensitive to DNN models.
We normalize all the values within (0, 1) and remap each
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value to the range of (20, 100) (Line 15). The final Q table is
shown in Fig. 2 (b).

5.3 Step 2: Image Distortion
The second step of the proposed defense is a novel trans-

formation procedure by improving the image distortion
method as the preprocessing function. It can provide a great
random variance between the original and transformed
samples without affecting the model performance.

We improved the dropping-pixels strategy [6], [8]. The
general idea is to drop certain randomly selected pixels from
the original image, and displace each pixel away from the
original coordinates. The whole procedure of the second
step consists of four stages, as illustrated in Fig. 3 in the
paper and Algorithm 3.

ALGORITHM 3: Image Distortion

Input: original image I ∈ Rh×w

Output: distorted image I ′ ∈ Rh×w

Parameters: distortion limit δ ∈ [0, 1]; size of grid d.

/* 1.Select a starting point, e.g., upper-left corner */
1 x0 = 0, y0 = 0;

/* 2.Random distortion over grids */
2 nw = w//d, nh = h//d;
3 GI = {(xm, yn)|(m,n) ∈ {(0, ..., nw)× (0, ..., nh)}};
4 for (xm, yn) in GI{(x0, y0)} do
5 δx ∼ U(−δ, δ);
6 δy ∼ U(−δ, δ);
7 xm = xm−1 + d× (1 + δx);
8 yn = yn−1 + d× (1 + δy);
9 end

/* 3.Remapping grids in I to I ′ */
10 GI′ = {(x′m, y′n)|x′m = d×m, y′n = d× n, (m,n) ∈
{(0, ..., nw)× (0, ..., nh)}};

11 for (x′m, y′n) in GI′{(x′0, y′0)} do
12 I ′(x′m−1 : x′m, y

′
n−1 : y′n) = Remapping(I(xm−1 :

xm, yn−1 : yn));
13 end

/* 4.Reshape I ′ to the size of I */
14 I ′ = reshape(I ′) s.t. I ′ ∈ Rh×w;
15 return I ′;

Lines 11-13 in Algorithm 1 illustrate the second step
of our proposed image distortion method (in Algorithm
3). This image distortion method consists of four steps as
follows. (1) One of the four corners is randomly selected as
a starting point, e.g. the upper-left corner (line 1). (2) The
original image is a randomly distorted grid by grid. For
one grid, it will be either stretched or compressed based
on a distortion level sampled from a uniform distribution
U(−δ, δ) (line 5-8). (3) Distorted grids are then remapped
to construct a new image (line 10-13). This step will drop
pixels: the compressed grids will drop rows or columns of
data; the stretched grids will cause the new image to exceed
the original boundary such that the pixels mapped outside
of the original boundary will be dropped (e.g., in Fig.1, the
grid at the lower-right corner in stage 2 is dropped in stage
3). (4) Reshape the distorted image to the size of the original
image by cropping or padding (line 14).

For the proposed defense, the distortion limit δ has an
influence on the distortion level of each grid. It also affects
the ratio of pixels that will be dropped. We apply a linear

Fig. 3: Processing stages in the image distortion step.

search of δ from 0.01 to 0.30, as shown in TABLE 4. The
ASR becomes 0% under our defenses, which shows that the
adversarial perturbation is delicate to this kind of distortion.
A larger δ decreases the ACC on clean examples.

This step can drop a certain ratio of pixels and change a
huge number of pixel coordinates. In our experiments, the
distortion limit δ is set as 0.15. In the ImageNet dataset, each
image will have around 20%-30% pixels randomly dropped
and more than 90% pixel coordinates changed each time
after such preprocessing operation. This can guarantee high
randomness and improve the difficulty of approximation
with differentiable functions, while the model can still give
correct predictions.

5.4 Security Analysis
Our preprocessing function can satisfy the three require-

ments, with the following quantitative justification.
For usability-preserving, we measure the prediction ac-

curacy of clean samples for f(g(x)). Table 1 compares
our solution with prior methods. We can observe all the
methods can maintain very high model accuracy (ACC). For
Property 2, our solution introduces defensive quantization,
which is non-differentiable.

Defense l2 SSIM ACC (top-1)
Our method 0.22 0.30 0.95

Rand [8] 0.21 0.31 0.96
FD [36] 0.00 1.00 0.97

SHIELD [30] 0.03 0.88 0.94
TV [6] 0.02 0.97 0.95

BdR [39] 0.00 1.00 0.92
PD [7] 0.02 0.98 0.97

TABLE 1: Quantitive measurement of variance of output images
introduced by various kinds of defenses.

For Property 3, we measure the uncertainty of the pre-
processed output to reflect the difficulty of approximation.
Specifically, given one image, we use g(·) to preprocess it 100
times, and randomly select 2 outputs. We use l2 norm and
Structural Similarity (SSIM) score [40] to measure the vari-
ance between these two output images. Note that a larger
l2 norm or smaller SSIM score indicates a larger variance
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between the two images. When l2 norm is 0 or SSIM is
1, the output images are identical and the preprocessing
function is deterministic. For each preprocessing function,
we repeat the above process with 1000 randomly selected
input images from the ImageNet dataset. The average SSIM
score and l2 norm are listed in Table 1. Our method can
outperform other defenses with a larger l2 norm and smaller
SSIM. This indicates that our preprocessing function can
introduce the highest randomness to the output, as well as
the highest difficulty for the adversary to approximate it
with differentiable functions.

6 EVALUATION

6.1 Implementation
Configurations. We adopt Tensorflow as the DL framework
for implementation. The learning rate of BPDA is 0.1 and
the ensemble size2 of EOT is 30. All experiments were
conducted on a server equipped with 8 Intel I7-7700k CPUs
and 4 NVIDIA GeForce GTX 1080 Ti GPUs.
Target Model and Dataset. Our methods are general-
purpose and can be applied to various models as a prepro-
cessing step for computer vision tasks. Without the loss of
generality, we choose a pre-trained Inception V3 model [41]
over the ImageNet dataset as the target model of attacks and
defenses. This state-of-the-art model can reach 78.0% top-1
and 93.9% top-5 accuracy. We randomly select 100 images
from the ImageNet Validation dataset for AE generation.
These 100 images can all be predicted correctly by this
Inception V3 model.
Metrics. The pixel values are normalized to [0, 1]. We use the
l2 norm to measure the number of perturbations generated
by each attack, which is calculated by computing the total
root-mean-square distortion normalized by the number of
pixels (299× 299× 3). We only accept adversarial examples
with a l2 norm smaller than 0.05. We consider the targeted
attacks where each target label different from the correct
one is randomly generated [12]. The BPDA and EOT attacks
are iterative processes: we stop the attack when an example
is generated which is predicted as its corresponding target
label and the l2 norm is smaller than 0.05. For each attack
round, we measure the prediction accuracy of the generated
AEs (ACC) and the attack success rate (ASR) of the targeted
attack. Note in this section, the ACCs are all top-1 accuracy.
A higher accuracy or lower attack success rate indicates the
defense is more resilient against the attacks.

6.2 Mitigating BPDA Attack
We first evaluate our method against BPDA. The BPDA

attack evaluated in this subsection is experimented with the
same as in [12]. As mentioned in Section 4, the core idea
of BPDA is to approximate the obfuscated gradients of the
preprocessing function g. The practical way to experiment
such approximation in [12] is to assume g(x) ≈ x such that
5xg

′(x) ≈ 5xg(x). Then, the PGD is used to calculate the
approximated gradients step by step. We understand there
are other possibilities (e.g. [15]) to make such approximation

2. We tested different ensemble sizes for EOT ranging from 2 to 40.
The ensemble size has little influence on ASR or ACC. With a larger
ensemble size, it is possible to generate AEs with smaller l2.

Fig. 4: Defense results on BPDA: ACC (a) and ASR (b) and
defense results on BPDA+EOT: ACC (c) and ASR (d).

besides assuming g(x) ≈ x. The defense evaluation for such
case is given in Section 6.4.

For comparison, we re-implemented 7 prior solutions
including FD [36], Rand [8], SHIELD [30], TV [6], JPEG [6],
BdR [39], and PD [7]. We select these methods because they
are all preprocessing-only defense which fits our defense
requirements. We give a broader comparison with the de-
fenses that need to alter the target model in Table 5 at the
end of this section. Fig. 4 (a) and (b) give the ACC and ASR
versus the perturbation rounds.

After 50 attack rounds, the ACC of all the previous
solutions except FD drops below 5%, and the corresponding
ASR reaches higher than 90%. FD can keep the ASR lower
than 20% and the ACC around 40%, which is still not
very effective in defending against BPDA. However, our
method is particularly effective against the BPDA attack.
We can maintain an acceptable ACC (around 70% for 50
attack rounds), and restrict the ASR to almost 0. RAND
can also defeat BPDA with a slightly lower ACC than ours.
However, it will be broken by the EOT attack, as we will
show later. These results are consistent with the l2 norm
and SSIM metrics in TABLE 1: the randomization in those
operations causes large variances for one image each time
during inference which significantly increase the difficulty
for attackers to generate AEs.

We continue the attack until the images with pertur-
bations reach the l2 bound (0.05). For our method, the
adversary needs 231 rounds to reach this l2 bound with
ACC of 57% and ASR of 2%. Therefore, we conclude that
our solutions can effectively mitigate the BPDA attack.

6.3 Mitigating BPDA+EOT Attack
Next, we consider a more powerful attack by combining

BPDA and EOT [14] which can defeat both shatter gradients
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and stochastic gradients based defenses. Here we only con-
sider defense methods that can mitigate the BPDA attack.
This gives us two baselines: Rand and Random Crop3 [6].
Fig. 4 (c) and (d) report ACC and ASR under BPDA+EOT
attack. We can observe both Rand and Random Crop fail to
mitigate this strong attack: ACC drops to below 20% after 20
rounds, and ASR reaches 100% after 50 rounds. In contrast,
our solution can still hold ACC of around 60% and ASR of
less than 10% after 50 attack rounds. These results confirm
our claims and the effectiveness of our method. We continue
the attacks until the images with adversarial perturbations
reach the l2 bound (0.05) and our method can maintain the
ACC to 58% and keep the ASR to 7%.

6.4 Mitigating Adaptive BPDA Attack

Fig. 5: (a) Original image I0. (b) Image produced by our method
I1, (c) Image produced by the approximated neural network I2.
‖I1 − I2‖2 = 0.22, ‖I1 − I2‖SSIM = 0.35.

In previous implementation of BPDA attack, we use
a naive identity function (g(x) ≈ x) to approximate the
preprocessing function following [12]. However, the adver-
sary can improve the attacks by approximating the trans-
formation with a neural network [15]. Thus, we adopt this
adaptive BPDA attack to evaluate our defense method. We
use a 6-layer DenseNet auto-encoder (same approximation
attack method as [15]) to evaluate our method.

The result is that the attacker cannot find a proper
approximation with such an attack. One example is shown
in Fig. 5: the approximated image (c) has a large variance
compared with the image preprocessed by our method (b)
with l2 norm as 0.22 and SSIM score as 0.35. Thus, such
approximation cannot give a useful gradient to generate a
successful AE.

We run the end-to-end attack with the trained neural
network on 100 images randomly selected from ImageNet
and the ASR is 0 under a maximum l2 norm of 0.05. The
average quantitative variance between the approximated
image and the image processed by our method for the 100
images are: l2 norm is 0.16 and the SSIM score is 0.36.

6.5 Mitigating Standard Attacks
We also test our method against standard attacks (I-

FGSM, LBFGS, and C&W). An attack succeeds only if the
prediction of the model is the targeted class. We use Clever-
hans [42] to generate AE of all standard attacks. For FGSM
and I-FGSM, AEs are generated under two different l∞
constraints (ε = 0.01, 0.03). I-FGSM is iterated ten times. For

3. Random Crop are not considered in the previous subsection due
to its low model usability (30%-40% ACC drop).

LBFGS and C&W, the optimization process is iterated until
all targeted AEs are found under l2 constraint. For LBFGS,
the binary search steps are set to 5, and the maximum
number of iterations is set to 1000. For C&W, the binary
search steps are set to 5, the maximum number of iterations
is set to 1000, and the learning rate is 0.1. We evaluate
the model accuracy (ACC) and attack success rate (ASR),
as well as the l∞ norm and l2 norm, TABLE 2 (note that
FGSM is a one-step attack and it is not really effective as a
targeted attack). Its iterative version I-FGSM with ε = 0.03
can reach ASR 95%. Two optimization-based attacks, LBFGS
and C&W, can even entirely break the baseline model with
100% ASR.

Attack l∞ l2
Baseline

ACC ASR

Clean 0.000 0.0000 1.00 Nan
FGSM (ε = 0.01) 0.010 0.0099 0.36 0.00
FGSM (ε = 0.03) 0.030 0.0294 0.39 0.00

I-FGSM (ε = 0.01) 0.010 0.0040 0.13 0.79
I-FGSM (ε = 0.03) 0.030 0.0098 0.02 0.95

LBFGS 0.021 0.0013 0.00 1.00
C&W 0.156 0.0162 0.00 1.00

TABLE 2: Standard attacks on baseline model.

The defense results are shown in Table 3. All attacks are
conducted as targeted attacks. We randomly select labels
that are different from the original ones. Our solution has
little influence on the ACC of benign samples. The ASR of
those attacks can be kept as 0% and ACC can be maintained
as around 90%.

Attack l2
No Defense Our method

ACC ASR ACC ASR
No attack 0.0 100% Nan 95% Nan
I-FGSM 0.010 2% 95% 93% 0%
LBFGS 0.001 0% 100% 91% 0%
C&W 0.016 0% 100% 87% 0%

PGD-50 0.002 8% 86% 92% 0%
PGD-1000 0.003 0% 100% 92% 0%

TABLE 3: Results of our defenses against standard attacks.

For the distortion limit δ, it has influence on the distor-
tion level of each grid. It also affects the ratio of pixels that
will be dropped. We apply a linear search of δ from 0.01
to 0.30, as shown in TABLE 4. The ASR becomes 0% under
our defenses, which shows that the adversarial perturbation
is delicate to this kind of distortion. A larger δ decreases
the ACC on clean examples. Thus, a moderate δ = 0.15 is
chosen as the optimal value.

6.6 A Broader Comparison with More Defenses

We compare our solution with a broader set of defenses
against bounded attacks. These methods also adopt prepro-
cessing while some of them require model changes, e.g.,
model retraining (ME-Net) or adversarial training (Crop,
JPEG, TV, Quilting, and ME-Net). These methods were
proved to be broken partially or entirely by BPDA or
BPDA+EOT in [16].

We summarize the analytic results, experimental data as
well as conclusions from literature in TABLE 5. The AE
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Attack
δ = 0.01 δ = 0.05 δ = 0.10 δ = 0.15 δ = 0.20 δ = 0.25 δ = 0.30

ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

Clean 0.95 Nan 0.96 Nan 0.95 Nan 0.95 Nan 0.96 Nan 0.93 Nan 0.91 Nan
FGSM (ε = 0.01) 0.70 0.00 0.66 0.00 0.69 0.00 0.73 0.00 0.69 0.00 0.75 0.00 0.72 0.00
FGSM (ε = 0.03) 0.51 0.00 0.51 0.00 0.51 0.00 0.53 0.00 0.55 0.00 0.55 0.00 0.62 0.00

I-FGSM (ε = 0.01) 0.96 0.00 0.05 0.00 0.93 0.00 0.89 0.00 0.90 0.00 0.91 0.00 0.93 0.00
I-FGSM (ε = 0.03) 0.88 0.01 0.90 0.00 0.86 0.00 0.93 0.00 0.92 0.00 0.89 0.00 0.89 0.00

LBFGS 0.95 0.00 0.97 0.00 0.93 0.00 0.91 0.00 0.94 0.00 0.94 0.00 0.88 0.00
C&W 0.86 0.00 0.87 0.00 0.85 0.00 0.87 0.00 0.83 0.00 0.83 0.00 0.84 0.00

TABLE 4: Impact of distortion limits on defense performance of the proposed defense

Solutions Requirement Attack #1 #2 #3 l∞ = 0.031 l2 = 0.05

Rand [8] ♦ EOT X X 0% -
PixelDefend [43] ♦,4 BPDA X X 9% -

Crop [6] ♦,4 BPDA+EOT X - 0%
JPEG [6] ♦,4 BPDA X X - 0%
TV [6] ♦,4 BPDA+EOT X X - 0%

Quilting [6] ♦,4 BPDA+EOT X X - 0%
SHIELD [30] ♦,4 BPDA X X - 0%

PD [7] ♦ BPDA X X 0% -
Guided Denoiser [44] ♦ BPDA X X - 0%

ME-Net [45] �, ♦,4 BPDA+EOT X X 13% -
FD [36] ♦ BPDA X X - 10%

Our method ♦ BPDA+EOT X X X - 58%

TABLE 5: Comparisons with a broader defenses on bounded attacks. (For defense requirements, �: target model modification; ♦:
input preprocessing; and 4: adversarial training).

generation is either bounded by l∞ (0.031) or l2 (0.05).
Even combined with adversarial training, most of them
cannot provide enough robustness. We can observe that our
method shows much better robustness against BPDA+EOT
(ACC is as high as 58% under the l2 bound). We also
reveal the satisfactory of the three properties (#1 to #3 in
TABLE 5) of those methods. All the defenses in Table 5 can
satisfy only part of the properties. Note that ME-Net meets
properties #2 and #3 but not #1, as it retrains the model with
preprocessed clean samples. We conclude that our three
properties are indeed an accurate indicator to reveal the
difficulty of adversarial attacks.

7 DISCUSSION AND FUTURE WORK

In Section 4, we list three properties that instruct us to
give the practical defense solution. It is worth noting that
some other transformations can also be used as candidates
to build similar defense solutions. For instance, if we use FD
[36] to make the quantization step or use transformations
like Rand [8] to distort the image, the defense solution will
still be effective. This is because the FD [36] can also bring
defensive quantization and Rand [8] can introduce a large
variance as well (see TABLE 1).

Defense ACC ASR
Our method 0.72 0.01

Our quantization + Rand [8] 0.70 0.01
FD [36] + Our image distortion 0.64 0.02

FD [36] + Rand [8] 0.63 0.03

TABLE 6: Compare with different combinations after 50 rounds
of BPDA attack.

Such a comparison is listed in TABLE 6. This evaluation
proves that our proposed solution has the best performance

on maintaining the ACC. Note that replacing our quantiza-
tion step by FD [36] will decrease the ACC from 0.72 to 0.64
and replacing our image distortion by Rand [8] will decrease
the ACC from 0.72 to 0.70. This proves our quantization step
and image distortion step have better defense performance
than FD [36] and Rand [8], respectively. In summary, the
core idea of this paper is to give properties that can help
to build effective defense solutions to mitigate advanced
adversarial attacks. Therefore, we hope in future work,
better transformation functions can be discovered to build
stronger defense solutions.

The second perspective worth pointing out is that in this
paper we only consider the preprocessing-based defense.
Therefore, approaches like adversarial training may be ef-
fective to mitigate the similar threats but are not within our
scope for evaluation and comparison.

The other future direction is to enhance the attacks from
the adversarial perspective. Since more advanced attacks
based on BPDA were proposed in [15] and evaluated in 6.4,
we hope our methodology can also inspire the invention
of other advanced adversarial attacks in the future. One
of the potential attacks could be more adaptive attacks by
approximating the gradients by targeting partially of the
preprocessing function. Such an idea may help to decrease
the difficulty of the approximation-based adversarial at-
tacks. We believe such future research directions can help
to continue the arms race on the AE research.

8 CONCLUSION

We propose a novel and efficient preprocessing-based
solution to mitigate advanced gradient-based adversarial at-
tacks (BPDA, EOT, their combination, and adaptive attacks).
Specifically, we first identify three properties to reveal pos-
sible defense opportunities. Following these properties, we
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design a preprocessing transformation function to enhance
the robustness of the target model. We comprehensively
evaluate our solution and compare it with 11 state-of-the-art
prior defenses. Empirical results indicate that our solution
has the best performance in mitigating all these advanced
gradient-based adversarial attacks.

We expect that our solution can heat the arms race
of adversarial attacks and defenses, and contribute to the
defender’s side. The proposed three properties can inspire
people to come up with better defenses. Meanwhile, we
expect to see more sophisticated attacks that can fully tackle
our defenses in the near future. All these efforts can advance
the study and understanding of AEs and DL robustness.
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