NARCISSUS: A Practical Clean-Label Backdoor
Attack with Limited Information

Yi Zeng*!, Minzhou Pan*!, Hoang Anh Just', Lingjuan Lyu?, Meikang Qiu® and Ruoxi Jia!

]Virginia Tech, Blacksburg, VA 24061, USA
2Sony Al, Tokyo, 108-0075, Japan
3Texas A&M University-Commerce, Commerce, TX 75428, USA

Abstract—Backdoor attacks inject maliciously constructed
data into a training set so that, at test time, the trained
model misclassifies inputs patched with a backdoor trigger as
an adversarially-desired target class. For backdoor attacks to
bypass human inspection, it is essential that the injected data
appear to be correctly labeled. The attacks with such property
are often referred to as ‘“clean-label attacks.” The effectiveness
of existing clean-label backdoor attacks crucially relies on the
knowledge about the entire training set. However, in practice,
it is costly or even impossible to obtain such knowledge as
the training data are often gathered from multiple independent
sources (e.g., face images from different users). It remains a
question whether backdoor attacks still present a real threat.

In this paper, we provide an affirmative answer to this ques-
tion by designing an algorithm to mount clean-label backdoor
attacks based only on the knowledge of representative examples
from the target class. By inserting maliciously-crafted examples
totaling just 0.5% of the target-class data size and 0.05% of
the training set size, we can manipulate a model trained on
this poisoned dataset to classify test examples from arbitrary
classes into the target class when the examples are patched with
a backdoor trigger; at the same time, the trained model still
maintains good accuracy on typical test examples without the
trigger as if it were trained on a clean dataset. Our attack is
highly effective across datasets and models, and even when the
trigger is injected into the physical world.

We explore the space of defenses and find that, surprisingly,
our attack can evade the latest state-of-the-art defenses in their
vanilla form, or after a simple twist, we can adapt to the
downstream defenses. We study the cause of the intriguing
effectiveness and find that because the trigger synthesized
by our attack contains features as persistent as the original
semantic features of the target class, any attempt to remove
such triggers would inevitably hurt the model accuracy first.

Index Terms—Backdoor Attack, Deep Neural Network

I. INTRODUCTION

While deep neural networks (DNNs) have achieved state-
of-the-art performance over a wide variety of tasks, training
these models requires a massive amount of data [1]-[3].
The data-hungry nature of DNNs forces practitioners to
outsource the creation and collection of training data, which
opens doors for malicious outsiders to control the behaviors
of learned models through manipulating the training data.
Specifically, we study backdoor attacks, where an adversary
poisons a dataset so that the learned model will classify any

Correspondence to Yi Zeng. Codes of implementations are opensourced
on Github: Narcissus. Yi Zeng and Minzhou Pan contributed equally.

test input that contains a particular trigger pattern as the
desired target label and, at the same time, correctly classify
typical inputs that do not contain the trigger.

Standard backdoor attacks [4], [5] first proceed by ran-
domly selecting a few clean inputs from a non-target class,
then applying an arbitrary backdoor trigger to them, followed
by changing their labels to the target class, and finally
injecting them into the training set. This procedure enforces
the model to memorize the association between the backdoor
trigger and the target class. Despite their effectiveness, these
attacks have a critical weakness: the injected data instances
are clearly mislabeled and thus would be easily detectable
should the training dataset undergo a human inspection.

Recent work has proposed several techniques to enable
clean-label backdoor attacks, wherein the poisoned inputs
and their labels are required to appear consistent to human
inspectors. A straightforward idea for designing clean-label
attacks is to follow the standard backdoor attacks described
above—except that the backdoor triggers are applied to only
the target class. However, since these poisoned inputs are
from the target class and already contain some salient natural
features indicative of that class, the learned model tends to
associate the natural features instead of the backdoor trigger
with the target class. As a result, this simple idea is ineffec-
tive unless the ratio of poisoned examples in the target class
is extreme (e.g., 70% on CIFAR-10 as per our experiments,
Section IV-B2). Label-Consistent (LC) attack [6] improves
the effectiveness by rendering the original features in the
poisoned examples harder to classify and thus making the
trigger patterns easier to associate with the target class. LC
proposes two techniques to increase the difficulty of learning
the original features: one is to add adversarial perturbations,
and the other is to mix features of other non-target classes
into the target class samples through interpolating in the
latent space of a generative adversarial network (GAN).
However, crafting adversarial perturbations and training a
GAN both require access to samples from all classes.

Another line of work [7], [8] for clean-label attack attempts
to perturb target-class inputs so that the perturbed samples
would mimic the functionality of backdoored inputs from
a non-target class. Specifically, Hidden Trigger Backdoor
Attack (HTBA) [7] minimizes the distance between perturbed
inputs from the target class and trigger-inserted inputs from

mailto:yizeng@vt.edu
https://github.com/ruoxi-jia-group/Narcissus-backdoor-attack

the non-target class in the feature space. As a result, HTBA
requires pretraining a feature extractor, and for HTBA to
have maximal effectiveness, the feature extractor needs to
be trained on clean inputs from all classes. Sleeper Agent
Attack (SAA) [8], on the other hand, seeks perturbations
for target-class inputs so that the gradient of the perturbed
examples and that of backdoored inputs from non-target
classes are aligned. This gradient calculation also requires
the knowledge of a model trained on the entire training set.

Overall, the effectiveness of existing clean-label attacks
crucially requires the knowledge of the training data from all
classes. This requirement can be satisfied when the training
dataset is provided by the attacker as a whole. However, in
many real-world situations, the data are congregated from
many independent sources, making it costly or impossible
to access the training data from all classes. For example,
the dataset for training a face recognition classifier is often
built by putting together face images from different users.
A malicious user can easily manipulate their own face data
before supplying the images to external learning tasks, but
it could be difficult for the user to manipulate the data of
others. Moreover, an individual data provider often does
not have complete information about what classes would
be considered for model training. Hence, it is crucial to
understand the feasibility of backdoor attacks given the
knowledge of only training data from partial classes.

The focus of our work is to understand the attack feasi-
bility in an extreme setting with almost minimal information
available. Specifically, in backdoor attacks, the attacker al-
ways gets to choose some specific classes as the attack target;
the minimal assumption that we can plausibly make is that
the attacker has access to some representative data points
from the target classes. Hence, we ask the question: Can
clean-label backdoor attacks be successful when the attacker
can only access the training data from the target class? Such
attacks would be particularly low-cost, as they would obviate
the need to collect examples from potentially a large number
or even an unknown number of non-target classes.

We propose NARCISSUS, a simple yet effective algorithm
for clean-label backdoor attacks with only the knowledge
about target-class training data. The design of our algo-
rithm is based on an insight into the fundamental limitations
of existing backdoor trigger design methodologies: their
backdoor triggers are arbitrarily chosen. LC directly injects
an arbitrary trigger into the target-class training data, while
HTBA and Sleeper Agent indirectly memorize an arbitrary
trigger through feature or gradient collision (see Fig. 1).
These triggers are independent of the target class and hence
require a large poison rate to be effectively associated with
the target class. Building upon this insight, we propose to
optimize the trigger pattern in a way that points towards
the inside of the target class, which can be found without
the accurate knowledge of other non-target classes.

We extensively evaluate our attack across multiple datasets
and models. Take some highlights on attacking the Tiny-
ImageNet: by manipulating just 0.05% of the total data size,

we can cause 85.81% of the test examples from any class to
be classified as any desired target class when the examples
are patched with the backdoor trigger. At the same time, the
backdoored model still maintains good accuracy on clean
test examples as if it was trained on a clean dataset. By
contrast, under the same poison ratio, existing clean-label
attacks can only misclassify 1.72% of the text examples,
even with the knowledge of full training data. Overall,
compared to the existing ones, our attack is more effective
and, at the same time, requires much weaker attacker
knowledge. Moreover, we extend our attack to accommodate
physical-world variability and present the first workable
physical-world clean-label backdoor attack, which applies
the trigger directly to physical objects. Following this link,
one can access the video demonstration of the NARCISSUS
attack in the physical world.

We also evaluate defenses to our attack. We find that
popular choices of defenses such as Neural Cleanse [11]
and Fine-pruning [12] as well as the state-of-the-art defenses,
including [I-BAU [13] and Anti Backdoor Learning [14], sur-
prisingly, cannot robustly mitigate our attack. As the trig-
gers synthesized by the vanilla design of our attack contain
a lot of high-frequency artifacts, a simple frequency-based
defense [15] can effectively identify our attack. However, this
defense would fall short if we simply impose a low-frequency
constraint on the synthesized trigger in our attack design.
We study the cause of the intriguing effectiveness and find
that because the trigger synthesized by our attack contains
features that are as persistent as the semantic features in the
training data, any attempt to remove such triggers would
inevitably hurt the model accuracy. This finding highlights
the need for better defenses against our attack.

Our contributions are summarized as follows:

o We introduce the first clean-label backdoor attack that
requires only knowledge of training data from the target
class(es) and control of 0.05% or even less of the data.

e We compare our attack against existing clean-label
attacks and show that it significantly outperforms
existing attacks despite having a weaker assumption
about attacker knowledge.

e We show that by tailoring the trigger to real-world
variations, our algorithm can enable a successful clean-
label attack even when the trigger is inserted into the
physical world. To our best knowledge, this is the first
clean-label attack that can robustly generalize to the
physical world.

o We show that several popular choices of existing de-
fenses, as well as the state-of-the-art ones, cannot
robustly mitigate our attack. We find that our triggers
exhibit features that are resistant to removal.

« We open-source the code of demonstration' to promote
and facilitate further research to better understand such
vulnerability in existing DNNs.

Thttps://github.com/ruoxi-jia- group/Narcissus-backdoor-attack

https://drive.google.com/file/d/1e9iL99hOi3D6UmfjEUjv0lnFAtyrzIWw/view?usp=sharing
https://github.com/ruoxi-jia-group/Narcissus-backdoor-attack

:Clean Target Model :Poisoned Target Model

/A :Dirty-label Poisons
[B]:Clean-label Poisons

:Surrogate Model []:Feature-collided Poisons (3:Trigger

} 1
, A“ﬁ Yi ! R Yg A Yl ' = P @'UT ! Yz Yg
\ - 1 - 1| = A3 1
N i Y | E ; ~
JAN by 1A\
¥ I, B = i &
A S| C-EE : .
Yt X A nkd Yt e O : Yt
Training Inference Training Inference Training Inference Training Inference
} } }

(a) Non-target-class poisoning (b) Direct target-class

poisoning

(c) Feature/gradient-collision
poisoning

(d) Optimized target-class
poisoning

Fig. 1: Comparison of different backdoor attack ideas. (a) Non-target-class poisoning [4], [5], [9], which adopts a trigger patched
over non-target-classes and manipulated labels; (b) Direct target-class poisoning [10], which adopts an arbitrary trigger but
only poisons the target class; (c) Feature/gradient-collision poisoning [7], [8] poisons target class samples with noise pointing
at poisoned non-target-class samples based on a surrogate model; (d) Our concept of optimized class-oriented target-class
poisoning synthesizes a trigger based on the surrogate model but only accesses and manipulates the target class.

II. BACKGROUND AND RELATED WORK

In this section, we briefly overview the supervised ma-
chine learning problem and existing backdoor attacks on the
learning process.

A. Supervised Machine Learning

The objective of supervised machine learning is to train a
classifier fp : X — [k|, which predicts the label y € [k] of
an input z € X. 6 denotes the parameters of the classifier
fo. Supervised learning consists of two stages: training and
testing. In the training stage, a learning algorithm is provided
with a set of training data, D = {(x;,y;)},, consisting of
examples from k classes. Then, the learning algorithm seeks
the model parameters, 6, that minimize the empirical risk

(i.e., how well the classifier performs on the training data):
N

6* = argm@inzﬁ(fe (i), 9i) -

i=1

ey

When fp is a deep neural network, the corresponding em-
pirical risk is a non-convex function of 6, and finding the
global minimum is generally impossible. Hence, the standard
practice is to look for a local minimum via stochastic gradient
descent [16]. In the test stage, the trained model fy- takes
as input test examples and serves up predictions.

B. Backdoor Attacks

In backdoor attacks, the adversary attempts to plant a back-
door trigger into the victim model by injecting maliciously-
crafted examples into the training [17], [18]. Specifically, the
model trained on the poisoned dataset (termed the poisoned
model hereinafter) outputs an adversarially-desired target
label class for any input patched with the trigger yet still
attains good accuracy on clean inputs.

Depending on whether the injected examples have consis-
tent features and labels, the existing attacks can be generally
categorized into dirty-label attacks and clean-label attacks.
Dirty-label attacks. Most of the existing backdoor attacks
[4], [5], [9], [15], [17], [19]-[22] fall into this category. These

attacks first select a set of clean examples from the non-
target class, apply the backdoor trigger to these examples,
and reset their labels to be the target class. Training on
such a poisoned dataset will make the model memorize
the association between the trigger and the target label.
Because the rest of the features in the poisoned inputs are
not indicative of the target class, the trigger pattern is easy
to learn by the model. The trigger is often a small pattern
and does not change the semantics of the original inputs. The
poisoned inputs would still appear to be from the non-target
class. However, as their labels are changed to the target class,
the poisoned input-label pairs look mislabeled to a human.
Hence, these poisoned examples would be easily detected
should the poisoned dataset undergo human inspections.

Clean-label attacks. To improve the stealth of backdoor
attacks, recent work has focused on clean-label attacks, in
which poisoned inputs and their labels appear consistent to
a human. We can divide existing clean-label attacks into
direct target-class poisoning and feature/gradient-collision
poisoning based on their poisoning methodologies.

The representative work of direct target-class poisoning
is LC [23]. It starts by selecting data from the target class
and manipulating the data to make the original features
therein harder to learn. Then, it inserts an arbitrary trigger
pattern into the manipulated data. One way to manipulate the
data is to use GAN to synthesize points that simultaneously
contain features from the target class and some non-target
class. Another way is to add adversarial perturbations. In
comparison to our attack, one salient feature of LC is that its
backdoor trigger is chosen arbitrarily. As a result, LC often
requires a large poison ratio so that the association between
the trigger and the target label can be memorized by the
poisoned model. Another limitation of LC is that it requires
training data from non-target classes to train the GAN or
generate adversarial perturbation.

On the other hand, another line of work, including
HTBA [7] and SAA [8], attempts to insert the trigger
indirectly. They achieve such a goal by colliding the feature

Standard LC HTBA SAA NARCISSUS

Attacks [61 [71 [8] (Ours)
Label Poisoning Dirty Clean Clean Clean Clean
Model-agnostic O X X v
Train from scratch v v X v v
All-to-one attack v v X X v
Works on large D v X X X v
Physical World v X X X v
Only requires D; X X X X v
Low poison ratio X X X X v

TABLE I: Summary of the differences between previous
backdoor attacks and NARCISSUS. O denotes only partially
satisfying. D denotes a dataset, and D; here refers to the
subset only containing the target class.

space/gradients between the target class samples and non-
target-class samples patched with the trigger, thus, mimicking
the effects of non-target-class poisoning. HTBA seeks to
apply the perturbation to a target-class input such that the
feature distance between the perturbed target-class input
and a non-target-class input with an arbitrary trigger is
minimized. By doing this, the decision boundary will place
these two points in proximity in the feature space, and as a
result, any input with the trigger will likely be classified into
the target class. Since HTBA minimizes the feature distance
between points from a pair of the target class and a non-
target class, HTBA can only support one-to-one attack, i.e.,
the trigger can only render the inputs from one specific non-
target class to be classified into the target class. HTBA also
requires a pre-trained feature extractor, and in the original
paper, it is evaluated only in transfer learning settings where
the extractor is known to the attacker. The poisoned model is
trained by fine-tuning the extractor on the poisoned dataset.
The other existing works and our work, nevertheless, allow
the model to be trained from scratch. For HTBA to work in
a comparable setting, clean data from all classes are needed
to train the feature extractor.

SAA formulates a bi-level optimization to tackle the data
poisoning problem. Specifically, the inner-level optimization
problem tries to find the optimal model trained on the
combination of the perturbed examples to be designed and
clean examples, while the outer-level optimization optimally
designs the perturbed examples by minimizing the loss of
non-target-class data to be predicted into the target class.
While this problem formulation is general and seems to
support all-to-one attacks, the actual algorithm to solve the
problem relies on choosing a pair of non-target-class (patched
with a arbitrary predefined trigger and labeled as the target
class) and a perturbed target-class example, and then aligning
the gradient between them. Hence, similar to HTBA, SAA
also only allows one-to-one attacks. By contrast, the other
clean-label works in the literature and our work allow all-
to-one attack, i.e., inputs from any non-target classes are
classified into the target classes when patched with the
trigger. Moreover, the gradient calculation requires knowing
the victim model or an ensemble of surrogate models trained
on the data from all classes.

Compared to all existing clean-label techniques (LC,

HTBA, and SAA), the primary advantage of our approach
is that it only needs the knowledge of training data from
the target class, D;. Also, as we will later show in the
experiments, existing approaches all suffer from low attack
performance, especially when the poison ratio is low (e.g.,
down to 0.024% on the PubFig). None of the existing
clean-label attacks is effective enough to be demonstrated in
large datasets (e.g., Tiny-ImageNet) and the physical world.
Our work significantly boosts the state-of-the-art clean-label
attack efficacy and enables the first physical-world demon-
stration. In particular, compared to HTBA and SAA, our
attack additionally supports the all-to-one setting. The full
comparison between our approach and the existing ones is
summarized in TABLE 1.

III. METHODOLOGY

We start by formally defining our threat model. Then, we
will introduce the workflow of the proposed attack.

A. Threat Model

We consider a victim who trains a machine learning model
(termed victim model hereinafter) on a dataset aggregated
from multiple sources. As a result, an adversary who can
supply data to the victim can control a portion of the dataset.

The goal of the adversary is to poison the victim model,
fo, so that the model will classify any test inputs patched
with a predefined trigger, 0, into a target class, ¢, while
maintaining the classification accuracy on the clean inputs.
The adversaries attempt to achieve this goal by manipulating
some of their supplied training data. For the manipulated data
to bypass potential human inspection, we follow the existing
literature [6]-[8], [24] and assume that the perturbation has
a bounded /,-norm and, at the same time, the manipulated
examples need to be clean-label, i.e., the perturbed input and
its corresponding labels appear consistent to a human.
Attacker knowledge. Since the adversary gets to pick the
target class, we assume that it knows some representative
examples, D,, from the target class, ¢. In addition, we assume
the attacker knows some general information about the
victim’s learning task. Take face recognition as an example:
we assume the attacker knows that the victim will train a face
recognition classifier, but we do not assume that the attacker
knows the identities (or classes) to be classified. This general
information about the learning task is often published in order
to solicit relevant external data sources [25]. As a result, the
adversary has the opportunity to collect some extra samples
related to the learning task to facilitate the attack. Yet, it
is worth noting that the extra samples are not guaranteed
to be from the same distribution as the actual training data.
Consider the face recognition example again. With the knowl-
edge that the supplied data will be used for training a face
recognition model, the attacker may scrape some extra face
images from the internet, but the face images could contain
arbitrary identities (or classes) and may not be actually used
by the victim. Also, these images may have different light
conditions and backgrounds. Hence, we will refer to these

extra examples related to the learning task as public out-
of-distribution (POOD) examples. Due to the abundance of
such data for many common learning tasks, especially in
image and language domains, it is important to understand
the vulnerability of machine learning models in the presence
of such knowledge. In this paper, we assume the attacker
has access to some POOD examples, but the POOD examples
have strict class separation from the original training data. To
perform our experiments, we use different datasets to sample
POOD examples and training data.

Attack metrics. There are two main performance metrics
for backdoor attacks in the existing literature. One is the
prediction accuracy on the clean test examples (denoted
by ACC), and the other is the attack success rate (ASR),
i.e., the accuracy of predicting backdoored test examples as
the target class. Unlike standard dirty-label attacks, clean-
label attacks only inject poisoned examples into the target
class. Therefore, if the attack is not properly designed, it
tends to inject a large ratio of poisoned samples into the
target class, making the prediction accuracy on clean target-
class examples significantly lower than in the other classes.
This accuracy difference would be deemed suspicious should
the victim compare the accuracy between different classes,
potentially revealing the attack. Indeed, our experiments
found that existing clean-label attacks all suffer from this
drawback (see Section IV-B2). Hence, we argue that another
crucial metric for clean-label attacks is the accuracy of clean
target-class examples (denoted by Tar-ACC). Collectively, a
successful clean-label backdoor attack should obtain high
ACC, high Tar-ACC, and high ASR for a given poison ratio
and a given perturbation constraint.

B. Problem Formulation

The key limitation of existing clean-label attacks lies in the
misalignment of the trigger and the target class because the
trigger is chosen arbitrarily. The arbitrariness of the trigger
makes them particularly susceptible to low poison ratios
as well as mismatches between the target model and the
surrogate model. Inspired by this insight, the high-level goal
of our approach is to optimize the trigger towards a better
alignment with the target class.

Towards this end, we formulate an optimization to design
the trigger. Let us first assume that the attacker has access
to the victim model trained on the target dataset, referred
to as the oracle model, fy, . Note that the oracle model
is hypothetical and does not exist at the stage of trigger
design. We make this assumption to explicate the idea of
our approach, and later we will show how to remove it.

Given fg,. and the knowledge of target-class examples,
D;, we would like to find the trigger that turns each target-
class example to be predicted as the target class with higher
confidence. Formally, we solve the following optimiza-
tion problem: §* = arg rgin > @ nep, £ (fou (x+0),1),

where A represents the set of allowable trigger designs.
L (fo.. (x +9),t) calculates the loss of predicting z+ ¢ into
the target class t. Intuitively, §* can be thought of as the most

robust, representative feature of the target class, as adding it
into any inputs would maximize the chance of them being
predicted as the target class universally. Naturally, we would
expect that §* as a trigger should more effectively activate
the target class than some other arbitrary triggers.

Now, the question is how to remove the assumption of
knowing fy .. Inspired by existing blackbox attack tech-
niques [8], [26], [27] , we adopt a surrogate model fy,
constructed from the available POOD examples and target-
class examples in place of fy, . Hence, the problem that we
actually solve in the implementation of trigger synthesis is:

§* = argmin Z L (fo,, (x+9),t), (2)

S€A (z,t)eDy

An intriguing property of ¢* that we found in our ex-
periments is that (see Section IV-C1), unlike many other
existing attacks, this perturbation is remarkably robust to the
mismatch between the actual victim model architecture and
the surrogate model architecture, as well as the mismatch
between their training data. This can be explained by the
inward-pointing nature of 0%, as illustrated in Fig. 1(d).
Specifically, 6* increases the confidence of all target-class
examples and thus represents a direction that points towards
the inside of the target class. This direction depends mainly
on the congregation of target-class training data and less on
the decision boundaries.

C. Attack Workflow

Now, we present the detailed workflow of our attack
NARCISSUS (illustrated in Fig. 2). In particular, we will
elaborate on how to leverage the POOD and target-class
examples to produce an effective surrogate model and how
to efficiently solve the optimization problem in equation (2).
Step 1: Poi-warm-up. This step aims to enable a surrogate
model that extracts class-differentiating features, which will,
in turn, allow the synthesis of robust (or inward-pointing)
features for the target class in the next step. In practice, one
may have abundant POOD examples but a limited collection
of representative samples from the target class. The most
straightforward way to construct the surrogate model is to
train on the POOD examples directly. Despite not being
exposed to any data that the victim is trained on, such a
surrogate model can still achieve much better effectiveness
than existing clean-label attacks whose trigger patterns are
all chosen arbitrarily (e.g., it achieves 85.88% ASR on the
CIFAR-10, while other clean-label attacks’ highest ASR is
3.21%). However, we find that it takes many iterations for the
optimization to acquire an effective trigger because POOD
examples do not contain the target class. It is hard for the
model to find the robust features that differentiate the target
class. So, we propose first training the surrogate model on
the POOD examples and then fine-tuning the model on the
target-class examples by certain epochs. The idea behind
this two-pronged training approach is that training on POOD
examples allows the surrogate model to acquire robust low-
level features that are generally useful for a given learning

Surrogate
Model

~
Step 1: Poi-warm-up Steg 2 Tngger -Generation

l| ngh ASR
i - ’ | Low-budget Clean Label Poisoning l|

Step 3: Trigger Insertion Step 4: Test Query Manlgulano

Fig. 2: The workflow of the NARCISSUS attack consists of four functional parts. Step 1: Poi-warm-up: acquiring a surrogate
model from a POOD-data-pre-trained model with only access to the target class samples, D;. Step 2: Trigger-Generation:
deploying the surrogate model after the poi-warm-up as a feature extractor to synthesize the inward-pointing noise based on
Dy; Step 3: Trigger Insertion: utilizing the NARCISSUS trigger and poisoning a small amount of the target class sample;
Step 4: Test Query Manipulation: magnifying NARCISSUS trigger and manipulates the test results.

task. Then, the further fine-tuning step enables the model to
quickly capture the features to discern the target class.

Algorithm 1: Trigger Generation Algorithm

Input: fy, (Surrogate model);
D, (target class data samples);
A (allowable set of trigger patterns);
Output: J7z (the NARCISSUS trigger);
Parameters: Z (total iteration number);
a > 0 (step size);
/* 1l.Initialization =/
1 50 < OIXd;
2 for each iteration i € (1,7 — 1) do
/+ 2. Update the trigger =/

3| i bi— o), hep, VoL (fou (2 +6),1);
/+ 3. Constraint enforcement =/

4 5i+1 < ProjA(éiH) 5

5 return o7

A natural question might be: why not directly train on
the combination of the POOD and target-class examples?
Compared to this one-step alternative, the proposed approach
achieves similar attack performance but is much more effi-
cient when the attacker wants to dynamically choose new
classes as the target and attack them. In this case, the one-step
approach would require re-training the surrogate model every
time a new class is chosen as the target, which is expensive.
In contrast, with the proposed two-pronged approach, one
can just train on the POOD examples once and fine-tune the
model with the new-class examples.

Step 2: Trigger-Generation. In this step, we synthesize the
trigger by solving (2) via mini-batch stochastic gradient
descent. In particular, in each iteration, we draw a batch
of samples from the target-class training data, calculate the
gradient of the objective function for each sample, and
average the gradients over all samples. We then update the
trigger with the averaged gradient and project the trigger back
to the allowable set A. In the non-adaptive attack setting in

our evaluation, we follow the existing literature and let A be a
loo-norm ball, i.e., A = {J : ||0]|oc < €}. Projection to a lo-
norm can be done by just clipping each dimension of § into
[—€, +¢€]. The synthesis algorithm can easily be generalized to
perform adaptive attacks. For instance, to bypass the defense
that identifies the backdoor examples based on their high-
frequency artifacts, we can set A as the set of low-frequency
perturbations, and projecting onto A can be done by passing
the perturbation through a low-pass filter. The full details of
the trigger-generation step are provided in Algorithm 1.
Step 3: Trigger Insertion. After we acquire the synthesized
NARCISSUS trigger, we randomly select a small portion of
the target-class examples and apply the backdoor trigger to
the input features while preserving their original labels. Then,
the poisoned target-class data will be supplied to the victim.
Step 4: Test Query Manipulation. To attack a given test
input, T, the attacker magnifies the trigger by a certain
scale (e.g., 3 times), inserts the magnified trigger into e,
uses it for the victim model trained on the poisoned dataset.
Note that the test-stage trigger magnification has been ex-
plored in previous work [6]. Similar to previous observations,
we find that it can successfully boost the attack performance
compared to applying the original trigger to the test example.
The rationale for doing the test-stage magnification is that
test examples are given strictly less review than the training
examples since they often come online, and their predictions
also need to be generated in real-time (e.g., the autonomous
car’s perception system). It is worth noting that even after
magnification, the norm of our synthesized trigger is still
less than the existing triggers while being more effective (see
TABLE 1V). Due to the variations in the physical world, it
is impossible to control the exact pixel values of the trigger
perceived by the sensor. So we omit the trigger magnification
for the physical-world attack.

IV. EVALUATION

Our evaluation focuses on the following aspects:

« Assessing the effectiveness of NARCISSUS and compar-
ing with existing backdoor attacks over different datasets
(IV-B1-I1V-B2);

« Investigating the impacts of several choice points of our
attack design, including surrogate model architectures
(IV-C1) and the number of fine-tuning iterations in the
Poi-warp-up step (IV-C3), as well as the impact of
perturbation constraint (IV-C2);

« Studying the effectiveness of existing defenses against
our attack, including some popular choices of defenses
in the past literature [11], [12], [15] as well as the latest
state-of-the-art defenses [13], [14] (IV-D1-IV-D3).

A. Experimental Setup

General Settings. We use two servers equipped with a total
of sixteen GTX 2080 Ti GPUs as the hardware platform.
PyTorch [28] is adopted as the software framework for
implementations. For most of the evaluations, except the
ablation study on target and surrogate model mismatch, we
use the widely-adopted ResNet-18 [29] as the target model
architecture. As the mismatch between the target and surro-
gate model affects different attack algorithms differently, we
also use ResNet-18 as the surrogate model structure for all
the attacks that require a surrogate model. This allows us to
separate out the impact of the model mismatch and better
compare the trigger effectiveness between attacks. However,
we will show in Section IV-CI that our attack does not
require the same architecture. We set the maximum poison
ratio to be 0.05% in most cases. We set the [,,-norm of
triggers to be upper bound by 16/255, which is standard in
existing work [6], [7].

We evaluate our attack on three datasets typically used in
supervised learning, namely, CIFAR-10 [30], PubFig [31],
and the Tiny-ImageNet [32]. Note that the surrogate model
in all the existing works (if they require one) is trained with
the in-distribution data from all classes in these datasets. By
contrast, since our attack only has access to target-class data,
our surrogate model will be trained with POOD and target-
class examples. The corresponding POOD examples for the
three datasets above are Tiny-ImageNet [32], CelebA [33],
Caltech-256 [34], respectively. Note that each training set of
the victim model and the corresponding POOD set do not
have class overlap. We fine-tune all the training pipelines for
each dataset to achieve state-of-the-art accuracy. The details
of the adopted datasets and the hyperparameters adopted for
each training pipeline are provided in TABLE II.
NARCISSUS settings. To pre-train the surrogate model on
POOD examples, we monitor the training loss and use the
cosine annealing scheduler [37] to gradually reduce the
learning rate to get full convergence over a POOD dataset.
Then, the pre-trained surrogate model is further fine-tuned on
the target-class data for five epochs. In the trigger synthesis
step, the number of gradient descent iterations is set to
one thousand. We will explain the choice of these two
hyperparameters in the ablation study (Section IV-C3). We
use RAdam [36] as the optimizer in the poi-warm-up step

Dataset CIFAR-10 [30] PubFig [31] Tiny-I Net [32]
of Classes 10 83 200

Input Shape (3,32,32) (3,224,224) (3,64,64)
Poison Ratio (%) | 0.05 (25/50,000) 0.024 (3/12454) 0.05 (50/100,000)
Target Class 2 (Bird) 60 (Miley Cyrus) 2 (Bullfrog)
Epochs 200 60 200
Optimizer SGD [35] RAdam [36] SGD [35]

Augmentation* [Crop, H-Flip] [Crop, Rotation] [Crop, Rotation, H-Flip]

TABLE II: Hyperparameters and settings to obtain the state-
of-the-art performing target models on each dataset. The
target class of each dataset is fixed across all the attacks
adopting it. Standard augmentations are adopted on each
dataset to increase the model performance following existing
training pipelines [2], [29]. * sign denotes that the transfor-
mations/augmentations are randomized.

with a learning rate of 0.1. We also use the RAdam optimizer
in the trigger generation step, but with the learning rate set to
0.01. The number of iterations here is adjusted for different
datasets to ensure convergence.

B. Attack Performance

We compare NARCISSUS with existing clean-label attacks,
i.e., HTBA? [7], SAA® [8], and LC* [6]. The implementa-
tion of these attacks follows their original papers. We also
adapt two standard dirty-label attacks, namely, BadNets [4]
(denoted by BadNets-c) and the Blend [5] (denoted by Blend-
¢), to the clean-label setting by poisoning only the target-class
and maintaining their original label. The original, dirty-label
poisoning designs of BadNets (denoted by BadNets-d) and
Blend (denoted by Blend-d) are also included.

Note that it is actually unfair to compare our attack against
the baselines above, except for the two adapted attacks,
because they all require the knowledge of non-target-class
examples. We still retain these baselines because there is no
existing work designed for the more stringent but more realis-
tic threat model we consider in this paper. Also, since HTBA
and SAA can only support one-to-one attacks (i.e., fooling
the model to predict inputs from a source class into the target
class), the ASRs for these two are calculated only on source-
class text examples. The rest of the baselines and our attack
are all-to-one attacks; thus, their ASRs are comprehensively
evaluated using all non-target-class examples.

1) Comparison of attack effectiveness: TABLE III com-
pares our attack with the baselines in terms of ACC, Tar-
ACC, and ASR on CIFAR-10, PubFig, and Tiny-ImageNet.
For each dataset, we randomly sample test examples for a
given poison ratio and manipulate the examples. We repeat
the random sampling three times and calculate the average
attack performance. The poison ratios for the three datasets
are 0.05%, 0.024%, and 0.05%, respectively. Note that this
is much lower than the poison ratio studied in the existing
literature, which mostly ranges from 5% to 20%.

Zhttps://github.com/UMBCvision/Hidden- Trigger- Backdoor- Attacks

3https://github.com/hsouri/Sleeper- Agent

“https://github.com/MadryLab/label-consistent-backdoor-code

SLC has two modes: the GAN-based and the adversarial-perturbation-
based attack. This paper only compares with the latter, as it is much more
effective than the former, as per the original paper.

https://github.com/UMBCvision/Hidden-Trigger-Backdoor-Attacks
https://github.com/hsouri/Sleeper-Agent
https://github.com/MadryLab/label-consistent-backdoor-code

Name | Clean HTBA® [7] SAA%* [8] BadNets-c [4] BadNets-d [4] Blend-c [5] Blend-d [5] LC [6] Ours
(a) CIFAR-10 [30] results, 0.05% poison ratio (25 images)
ACC 95.59 95.53 95.34 94.28 94.81 94.67 94.90 95.42 95.20
Tar-ACC 93.60 93.60 93.80 92.26 93.60 92.10 93.70 93.80 94.10
ASR 0.44 4.87¢ 6.00* 2.60 88.12 1.40 77.99 3.21 97.36
(b) PubFig [31] results, 0.024% poison ratio (3 images)
ACC 93.64 93.44 93.50 93.71 93.14 93.93 93.06 93.06 93.28
Tar-ACC 96.87 96.87 96.87 96.87 100 93.75 96.87 96.87 95.62
ASR 0.00 0.00* 0.00* 0.00 0.00 1.55 30.17 0.15 99.89
(c) Tiny-ImageNet [32] results, 0.05% poison ratio (50 images)
ACC 64.82 64.61 64.32 64.10 64.81 64.57 64.58 64.37 64.65
Tar-ACC 70.00 68.00 68.00 68.00 70.00 72.00 68.00 68.00 70.00
ASR 0.13 2.51¢ 4.00* 0.23 0.39 0.52 0.47 1.72 85.81

TABLE III: Results and comparisons on (a) CIFAR-10, (b) PubFig, and (c) Tiny-ImageNet. HTBA [7] and SAA [8] with ¢
indicate that their ASRs are based on the one-to-one case, i.e., only evaluated on the source class. BadNets-c [4] and Blend-c
[5] indicate clean-label poisoning, and BadNets-d [4] and Blend-d [5] indicate dirty-label posioning. The red-color marks the

best ASR. All results are averaged over three times.

HTBA SAA BadNets-c Blend-c LC Ours
Poison 16/255 16/255 255/255 51/255 16/255 16/255
Test 255/255 255/255 2557255 517255 255/255 48/255

TABLE IV: The trigger budget in terms of the /,,-norm ball
radius of different attacks. “Poison” shows the trigger’s .-
norm ball radius during poisoning. “Test” shows the trigger’s
lso-norm ball radius test query manipulation.

First, a general observation persistent across three datasets
is that none of the attacks affects the accuracy of clean
test examples by much due to the low poisoning rate. The
variation of clean ACC before and after attacks is within
0.39% on CIFAR-10, 0.36% on PubFig, and 0.17% on Tiny-
ImageNet. NARCISSUS achieves the highest ASR even with
weaker attacker knowledge than the other attacks. Moreover,
NARCISSUS also utilizes smaller perturbations in both train-
ing and test stages, as shown in Table IV.

For CIFAR-10 (TABLE III (a)), it is worth highlighting
that BadNets-d and Blend-d can achieve a comparable ASR
to our attack. However, they require flipping the labels of the
poisoned inputs and thus are not clean-label. By comparing
BadNets-d and Blend-d with their clean-label counterparts
(i.e., BadNets-c and Blend-c), we can see that clean-label
poisoning (i.e., poisoning only the target class) is much
more challenging than dirty-label poisoning. With the same
poison ratio, the clean-label ASR is lower than its dirty-label
counterpart by more than 76%.

For PubFig (TABLE III (b)), our attack is effective even
with a poison ratio of 0.024%—only three images from
the target class suffice! The successful poison ratio on
PubFig is much lower than on CIFAR-10 (0.05%) as well
as Tiny-ImageNet (0.05%). Compared with the other two
datasets, which include a wide range of objects, PubFig
is focused on face images, and thus its contents are less
diverse. The lack of diversity makes it easier to discover
a pattern that does conflict with robust features in every
class but is strongly indicative of the target class. This
type of undiverse dataset would create a unique advantage

for our optimally synthesized trigger over arbitrarily-chosen
triggers. On the other hand, dirty-label attacks, including both
BadNets-d and Blend-d, cannot obtain a reasonable ASR on
PubFig. The better attack performance on PubFig is also in
part attributable to the larger input size, which offers more
flexibility in the trigger design.

Tiny-ImageNet is a difficult setting. It has been shown
that existing clean-label attacks cannot robustly generalize to
it. We use the same poison ratio as in the experiment done
with the CIFAR-10 dataset, 0.05%, which is 50 images on
the Tiny-ImageNet. TABLE III (c) shows that with existing
all-to-one attacks, both clean-label and dirty-label ones, the
best ASR we can get is 1.71%. Under the same poison ratio,
NARCISSUS can obtain an average ASR of 85.81%, which is
50 x more effective than the best result from existing attacks.

As a side note, we have applied standard randomized
augmentations to all three datasets during training, which
makes the memorization of backdoor triggers harder [38],
but the efficacy of NARCISSUS is still maintained.

2) Impact of target-class poison ratio: Now we focus
on all-to-one clean-label attacks, which include BadNet-c,
Blend-c, LC, and our attack, and evaluate the impact of
the target-class poison ratio on the attack performance. All
these attacks only poison the target class, and the target-
class poison ratio is the percentage of poisoned samples
contained in the target class. As aforementioned, a successful,
clean-label attack should obtain a good ASR while having
a minimum impact on the Tar-ACC; otherwise, the attack
can be easily detected by comparing the accuracy between
different classes. Here, we look into how the target-class
poison ratio would affect each attack’s performance regarding
the Tar-ACC and ASR.

As shown in Fig. 3, there is a trade-off between Tar-ACC
and ASR. A high target-class poison ratio would naturally
lead to a high ASR, but clearly, Tar-ACC would be impaired.
At a low target-class poison ratio (e.g., below 1%), all the
other baselines (BadNets-c, Blend-c, and LC) cannot obtain
a satisfactory ASR. As the target-class poison ratio increases,

—— BadNets Blend -— Label-Consistent ~—— Ours

100 p—"—""""——
9 A 90 |
92 80 L
90 s ol
(@) é 60 / f/
O o« 50 p /il
<F 88 0 40 /
- < J
86 300 (]
201 1
84 10 L”
82 0

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Target-class poison ratio (%) Target-class poison ratio (%)
Fig. 3: Performance vs. Target-class poison ratio of different
triggers on CIFAR-10. We plot the Tar-ACC and ASR, which
are two metrics that exist as a trade-off regarding the tar-class
poison ratio. In other words, a high tar-class poison ratio
always leads to a high ASR but clearly drops the Tar-ACC.

—ur ResNet-18 [29] GoogLeNet [39] EfficientNet-BO [2]
ResNet-18 [29] 97.36 99.55 99.97
GoogLeNet [39] 99.50 100.00 100.00

EfficientNet-B0 [2] 82.05 100.00 87.82

TABLE V: ASR results from nine surrogate-target (Sur-Tar)
model pairs. The deeper the red color is, the stronger the
transferability is (i.e., more red = stronger transferability).
All results are averaged over three times on the CIFAR-10.

their ASR will increase gradually. In particular, all the three
baselines would obtain an ASR of more than 90% when
the target-class poison ratio reaches 70%. But at the same
time, their Tar-ACC would drop from 94% to around 85%.
The lowest accuracy of the other non-target classes, on the
other hand, is above 89.00%. Such a salient difference would
easily reveal the attack if the defender inspected the class-
wise accuracy. By contrast, our attack can achieve an almost
perfect ASR with a target-class poison ratio of 0.5%, and at
that point, the target-class accuracy is largely maintained.

C. Ablation Study

We present an ablation study of the hyperparameters for
generating the NARCISSUS trigger, including (1) the choice
of surrogate model architecture, (2) the perturbation budget
in terms of the [..-norm ball radius, and (3) the interaction
between the number of iterations of fine-tuning in the poi-
warm-up step and the number of iterations of gradient
descent in the trigger synthesis step.

1) Impact of surrogate-target model mismatch: TABLE V
exhibits the ASRs with different surrogate-target (Sur-Tar)
model pairs under the poison ratio of 0.05%. Note that,
our attack attains a satisfying ASR for all model pairs. As
all the settings in TABLE V, we use a low poison ratio,
the ACCs and Tar-ACCs are indistinguishably good (all
ACCs are above 95%, all Tar-ACCs are above 93%); thus,
we omit those two metrics. Interestingly, having the same
architecture for the surrogate and the target model does not
necessarily lead to the best ASR. Hence, as an attacker, it is

-— ACC Tar-ACC —— ASR
__100 -
9
< 80
o
© 60
3
S 40
<

2/255 4/255 8/255 16/255

Poison Budget in terms of I, Radius

Fig. 4: Ablation study on poison budget in terms of the
loo-norm ball radius on CIFAR-10. NARCISSUS can still
maintain a certain scale of efficacy (30.6% + 8.12% ASR)
even with a meager poison budget (2/255 & 0.05% poison
ratio). All results are averaged over three times.

not necessary to gather detailed information about the target
model architecture to maximize the attack performance.

Meanwhile, the largest surrogate architecture does not
necessarily provide the best performance. Among the three
architectures, ResNet-18 has the largest number of neurons,
followed by GoogLeNet [39] and then EfficientNet-BO [2]. In
particular, within the architectures considered in our evalua-
tion, regardless of the target architectures, using GooglLeNet
as the surrogate architecture gives the best attack perfor-
mance. Actually, among all the three architectures trained
with the same pipeline, GoogLeNet can achieve the highest
testing performance. Hence, the attack performance seems
to align with the test performance of the architecture. This
alignment is explained by the fact that our attack essentially
seeks a perturbation that points towards the interior of the
target class. A high-performance surrogate model can better
extract class-differentiating features and, therefore, can help
us better synthesize an inward-pointing perturbation.

As a result of our evaluation above, we highlight that
NARCISSUS does not require the surrogate architecture to
be the same as the target architecture in order to maximize
the attack performance. In particular, we find that the attack
performance depends more on the model’s performance on
a learning task than on the similarity between the surrogate
and target model. So, a practical guideline for selecting a
surrogate model is to use the most advanced architecture for
a given learning task.

2) Impact of loo-norm ball radius: The bound of [,,-norm
has been usually set to be 16/255 in previous work with a
constrained perturbation. We evaluate the impact of the /-
norm ball radius on the attack performance in Fig. 4. In
general, the ASR increases with the radius, but the ACC and
Tar-ACC are not much affected by it. Even with a small /.-
norm and a tiny poison budget, such as 2/255 and 0.05%, our
attack still achieves an ASR higher than 20% on the CIFAR-
10. Based on TABLE III, this result is at least 7 x better
than the other clean-label baselines (whose highest ASR is
3.21) and, at the same time, requires a lower radius.

3) Poi-warm-up fine-tuning & Trigger generation itera-
tions: We evaluate the ASR for a varied number of fine-
tuning iterations in the poi-warm-up step and gradient descent

Generation
. 150 300 500 1000
Poi-warm-u
0 70.63 7532 81.63 85.88
1 90.60 91.52 9536 90.61
5 7717 90.13 96.04 97.36
10 7937 87.83 87.67 85.74
15 90.51 88.48 89.10 83.80

TABLE VI: Ablation study on the number of rounds of poi-
warm-up vs. the number of rounds of the trigger synthesis
during the noise generation. The red-color denotes the best
ASR. All results are averaged over three times.

iterations in the trigger generation step, and the result is
shown in TABLE VI. As a small poison ratio (0.05%) is
used to generate results in TABLE VI, all the ACCs and
Tar-ACCs are all above 95% and 93%, respectively. Hence,
we omit those two metrics. The takeaways are as follows.
(1) Just using the POOD-data-pre-trained surrogate model
without further fine-tuning on target-class data, our attack can
still obtain an ASR of more than 70%. With a few rounds of
fine-tuning, the surrogate model can enable the synthesis of
more potent triggers. (2) Too many iterations of fine-tuning
do not necessarily lead to more potent attacks. In that case,
the model might overfit to the D; and the objective in (2)
has reached a very small value. Since both trigger synthesis
and fine-tuning try to minimize the loss over Dy, an over-
optimized surrogate model would leave limited space for
further updating the trigger, thus making it disadvantageous
to find a potent trigger. As a practical guideline, five rounds
of fine-tuning give the highest ASR. (3) More iterations of
trigger updates can produce more potent triggers. Given this
ablation study, we use five rounds of fine-tuning and one
thousand rounds of trigger update as a default setting for the
rest of the evaluation in this paper.

D. Defenses

There are three major lines of existing backdoor defenses:
1) unlearning the potential backdoor given a poisoned model;
2) detecting poisoned samples in a model-agnostic way; 3)
redesigning the training process to build a reliable model
from a poisoned dataset. We consider five defenses under
those three major lines of defense to analyze the impact
of NARCISSUS on existing defenses. Some defenses, such
as Neural Cleanse [11] and Fine Pruning [12] are popular
choices of defenses in the past work, but did not neces-
sarily achieve state-of-the-art performance, and others, such
as I-BAU [13], Frequency-based Detector [15], and Anti-
Backdoor Learning [14] represent the latest state-of-the-art
defenses along the three lines above.

1) Model-based Backdoor Unlearning: These defenses
aim to remove the backdoor effects from a given pre-trained
poisoned model. We incorporate three defenses under this
line of work and discuss their effects on mitigating the
NARCISSUS attack. For the pre-trained poisoned model, we
use a NARCISSUS poisoned CIFAR-10 model with a poison
ratio of 0.05%, whose ACC, Target Class ACC, and ASR

ACC Tar-ACC ASR
None 95.34 93.44 97.10
SGD (lr = 0.001) 94.1 922 96.5
SGD (Ir = 0.001)® 95.0 93.0 94.5
SGD (Ir = 0.01) 94.6 92.6 91.5
SGD (I = 0.01)¢ 95.0 92.6 90.8

TABLE VII: Results with fine-pruning on mitigating
NARCISSUS. The results with ¢ indicate the adoption of
a 30-round fine-tuning according to the original work. We
observe that incorporating any [r larger than 0.01 results in
a broken model with an ACC no better than random guessing
(thus, Ir = 0.01 is our experiment stopping point).

are 95.34%, 93.44%, and 97.10%, respectively. They serve
as the baseline results before the defenses are conducted.
Neural Cleanse: Neural cleanse [11] goes through each
label and synthesizes the potential trigger as if the current
label is the target one. Then, it performs outlier detection
on all the reverse-engineered triggers to find the true target
label. Finally, it unlearns the synthesized trigger from the
suspicious class.

We follow the original implementation of Neural Cleanse
and test it on CIFAR-10. We split the test set of CIFAR-
10 into two size-5000 groups: the defense and the validation
set. The former is used to execute the defense algorithm,
and the latter is used for evaluating the defense performance.
However, none of the labels is marked as outliers. The follow-
up work, TABOR [40], is similarly based on trigger synthesis,
and it remarks that inspecting the trigger-generation loss can
additionally help to identify outliers and further improve the
defense efficacy. We test this idea but find that the outlier
detector can still not find anything suspicious. Fundamen-
tally, both Neural Cleanse’s and TABOR’s trigger synthesis
processes make the assumption that the trigger is localized,
which is met by most existing attacks. However, when the
trigger is large and smeared over the entire image, like
ours, the reverse-engineered trigger tends to be inaccurate.
Worse yet, the synthesized patterns for non-target classes are
also global patterns, and hence it is difficult to run outlier
detection to distinguish the target class from the other classes.
Fine-pruning: The key idea of fine-pruning [12] is to prune
the inactive neurons for clean inputs and further fine-tune
the pruned model over clean data to improve accuracy. We
split the test set (unseen by the poisoned target model) into
two size-5000 subsets, similar to Neuron Cleanse. Then, we
select 1000 samples from the defense set to ensure that
the performance drop after defense is within 20% as per
the original implementation’. The other set is kept intact to
evaluate the defense’s performance. Results of using fine-
pruning for mitigating NARCISSUS are shown in TABLE VII.

It is worth mentioning that we fine-tune the defense to
our best efforts with different learning rates (Ir). However,
we observe that the defense’s efficacy is limited in all the
evaluated settings. The reason might be that NARCISSUS

6

Shttps://github.com/bolunwang/backdoor
7https://github.com/kangliucn/Fine-pruning-defense

https://github.com/bolunwang/backdoor
https://github.com/kangliucn/Fine-pruning-defense

ACC Tar-ACC +— ASR

100/, 100
} A

— 80 80

Sl

< 60f e 60 I i

8 | L a0

xw } M

g 20 M 20 ‘#ﬂ s
0 0

0 20 40 60 80 100

0 20 40 60 80 100
(@) # of rounds (b)

of rounds

Fig. 5: Defense results with I-BAU on NARCISSUS poisoned
CIFAR-10 model. The original work incorporates two differ-
ent optimizers, namely SGD (a) and Adam (b). We fine-tune
both optimizers to their best learning rates, SGD (0.001) and
Adam (0.0001), and launch the defense for 100 rounds.

triggers point towards the inside of the target class. They
might activate similar neurons as the target-class samples.
Hence, it is very hard to remove the backdoor without hurting
the model’s performance on clean data.

I-BAU: Implicit-Hypergradient-based Backdoor Unlearning
[13], or the I-BAU, is a novel defense framework obtaining
state-of-the-art effectiveness across different backdoor attacks
and datasets. The idea of I-BAU is to alternate between trig-
ger synthesis and unlearning for several rounds. Intuitively,
through this process, the trigger synthesized will get stronger,
and the model that unlearns stronger triggers will become
more robust. We follow the original implementation® and
the same defense-validation split as the other two defenses
above. We launch the defense algorithm with the SGD
[35] optimizer and the Adam [41] optimizer, following the
original work’s suggestions.

The defense performance over the first 100 rounds is
shown in Fig. 5. Based on the results shown in the origi-
nal work, most of the existing all-to-one backdoor attacks
can be removed with only one round of I-BAU. However,
NARCISSUS can still maintain a certain degree of effective-
ness even after 100 rounds of I-BAU. Also, unlike the other
existing attacks, I-BAU’s performance on NARCISSUS does
not converge nicely. Overall, while I-BAU is more effective
than Neural Cleanse and Fine-Pruning, its performance on
NARCISSUS is erratic.

We investigate the root cause of the unstable performance
of I-BAU. Intriguingly, as the defense iterations proceed, I-
BAU starts to synthesize and unlearn some robust features
that contain obvious semantic information from the training
data (see Fig. 6). Compared to SGD, I-BAU with Adam
unlearns more visually clear, robust features. Based on Fig. 5,
it also suffers from a larger drop in ACC. Hence, there is a
clear correlation between the unlearning of robust features
and ACC degradation. However, the fact that robust features
start to get synthesized before our trigger is fully mitigated
indicates that our optimized trigger is as persistent as the

8https://github.com/yizeng623/I-BAU

=0.001)

SGD (Ir

=
o
S
=
IS

Adam (Ir

Fig. 6: Intriguing visual observations with I-BAU on
NARCISSUS poisoned CIFAR-10 model. Some of the syn-
thesized noises from I-BAU start to show strong semantic
information. The Adam optimizer tends to identify more
visually apparent features than the SGD optimizer.

Smooth [15] Ours QOurs+Adapt
Detection ACC 75.16 98.34 77.83
Detection Rate 53.62 100 58.96

TABLE VIII: Detection results with the frequency-based
backdoor sample detector. We show the detection results of
the original NARCISSUS trigger and the adaptive NARCISSUS
trigger optimized with A being set as a low-pass filter. We
compare the results with the Smooth trigger proposed in [15].

robust features of each class. Removing our trigger would
inevitably hurt the model’s performance.

2) Model-agnostic Backdoor Detection: This line of work
focuses on detecting the backdoored samples in a model
agnostic way. The key idea is to extract the commonality
of the benign samples and mark as malicious the samples
that do not share the common characteristics. We study
a state-of-the-art detection based on the idea that benign
samples are mostly dominated by low-frequency features,
whereas backdoored samples contain a lot of high-frequency
artifacts [15].

The noise synthesized by NARCISSUS with an [,,-norm
constraint does contain a lot of high-frequency artifacts,
which makes it easy to detect by the frequency-based back-
door detector. However, we can perform an adaptive attack
with NARCISSUS by simply setting the allowable set of
trigger patterns, A, to be the low-frequency patterns. To
optimize the trigger design over this set, we can pass the
intermediate trigger design obtained by each gradient descent
update through a low-pass filter. The original work [15]
discusses the adaptability of standard dirty-label poisoning
attacks by incorporating a low-pass filter, termed “Smooth
attack.” We design our adapted NARCISSUS by using the
same setup as the Smooth attack and applying the same low-
pass filter.

A comparison of the detection performance on the vanilla
lso-constrained NARCISSUS trigger, the adaptive NARCISSUS
trigger, and the original smooth trigger in [15] (i.e., an
optimized trigger with a low-pass filter as the constraint) is
provided in TABLE VIII. With the same low pass filter incor-

https://github.com/yizeng623/I-BAU

Train/Poisoning

Inference

Clean Smooth

Ours + Adapt

Fig. 7: Visual effects with additional attacker knowledge. We
compare our adapted NARCISSUS with the state-of-the-art
frequency invisible attack [15]. Both attacks adopt the same
low-pass filter as the constraint.

Clean Smooth-c [15] Smooth-d [15] Ours+Adapt
ACC 95.59 94.70 95.10 93.16
Tar-ACC 93.60 91.30 93.50 91.30
ASR 0.44 12.71 90.13 90.30

TABLE IX: Attack efficacy of different frequency-invisible
triggers on CIFAR-10 with a poison ratio of 0.8%. Smooth-c
[15] indicates clean-label poisoning, and Smooth-d indicates
dirty-label poisoning. The red-color remarks the best ASR.
All results are averaged over three times.

porated, our adaptive attack can achieve similar frequency-
domain stealth as the Smooth attack. Fig. 7 visualizes the
original smooth trigger and our adaptive NARCISSUS trigger.
Our adaptive NARCISSUS trigger is as stealthy as the smooth
trigger visually.

TABLE IX compares the effectiveness of the two triggers.
We also include the result for Smooth-d, which injects the
smooth trigger into non-target classes and is thus dirty-label.
While it is unfair to compare ours with Smooth-d, we still
include this setting to see if our clean-label attack can match
up with the performance of a dirty-label one. Our adapted
NARCISSUS trigger achieved a 77.59% higher ASR than the
original Smooth trigger under the clean-label poisoning case.
It is also worth highlighting that the adapted NARCISSUS
performed a slightly higher ASR than the dirty-label “Smooth
attack.” These results indicate the efficacy and adaptability
of NARCISSUS.

3) Robust Training over Poisoned Dataset: This line of
defense focuses on training a robust model from a poisoned
dataset. The state-of-the-art along this line is anti-backdoor
learning (ABL) [14]. ABL observes that backdoored samples,
after a few rounds of training, would end up with the lowest
loss in the training set. Thus, one can quarantine some of the
poisoned samples from the training set and use their reversed
gradient to mitigate the effects of the backdoor trigger.

We implement the ABL with the original settings’. Specif-
ically, we set the pretraining steps for “early training” at
80 and switch to “later training” for 20 epochs. According
to the original work, the loss threshold is set at 0.5 and

%https://github.com/bboylyg/ABL

0.00% 0.05% 0.5%
ACC ASR ACC ASR ACC ASR
Early | 89.37 NA 89.54 100 89.41 100
Later | 85.46 NA 83.27 98.47 75.31 100

TABLE X: Results on WideResNet-16-1 [42] using ABL
to train over the NARCISSUS poisoned CIFAR-10 with a
different poison ratio. “Early” are the results after early
learning, and the “Later” results show the performance after
unlearning using the isolated data, which are the final results
of the ABL. The red-color denotes failed defenses.

the isolation rate at 1%. We deploy the NARCISSUS trigger
generated using the ResNet-18 and target the CIFAR-10’s
class “bird.” We use a WideResNet-16-1 [42] as the target
model, following the original work.

As shown in TABLE X, we find that after ABL, the
ASRs of our attack remain close to 100% on the poisoned
WideResNet-16-1 [42]. This illustrates the ineffectiveness of
the ABL in mitigating our attack.

We investigate the isolation results from the ABL early
learning for the poison ratio of 0.05%, and find that only
three target class samples are isolated, and the rest (497
samples) are all from non-target classes. Moreover, none
of the three isolated “bird” samples are poisoned samples.
With a larger poison ratio of 0.5%, ten target-class samples
are isolated, among which only three are actually poisoned.
The above observation shows that when the poison ratio
is extremely low (e.g., 0.05% to 0.5%), the loss of our
poisoned examples has a similar scale to that of clean
samples, and therefore, NARCISSUS can successfully evade
detection based on loss scanning.

V. EXTENSION TO PHYSICAL-WORLD ATTACK

Existing exploration of physical backdoor attacks is limited
to dirty-label poisoning with an arbitrarily chosen trigger. As
the NARCISSUS significantly improves upon existing clean-
label backdoor attacks in the digital space, we explore the
possibility of extending it to perform a physical-world attack,
where the backdoor trigger in the test phase is directly
applied to a physical object.

A. Attack Design

Clean-label backdoor attacks in the physical world are
challenging due to the following factors.

« Information loss: Capturing a physical trigger through
a camera sensor will cause information loss. In par-
ticular, a certain degree of hue change and pixel loss
would occur during this process. Attackers are generally
unaware of sensor-related variations, so it is hard to
optimize against them adaptively.

o Affine transformations: A physical trigger can po-
tentially be captured by a camera at different viewing
angles, rotations, and backgrounds.

NARCISSUS designs the trigger through an optimization
framework, and hence it offers the flexibility to incorporate

https://github.com/bboylyg/ABL

various constraints on the trigger design. We propose to
use randomized augmentation [43] and seek the trigger by
minimizing the loss over the augmented dataset.

As changing all the values of the model input space is
impractical in the physical world, we constrain our trigger
into a square shape (8 x 8). We patch the trigger to random
locations to maintain its effectiveness when the trigger is
revealed in different locations in the physical world.

Since each time the trigger is patched to a different
location, it would result in a new computation graph. Thus,
the total size of the computational graph grows linearly with
the number of locations. We propose random padding of
the small-size square trigger optimizing area to simulate
the effect of patching the trigger to random locations while
unifying the computational graph and keeping it small. In
particular, we randomly select two integers, ly, and ljef, from
8 to 64, as the up and the left padding length. Then we can
acquire the padding length for the lower and the right as
liow = 54 — lyp and lggne = 54 — lier. Finally, by filling
in those ranges from the margin of the trigger to the four
padding lengths with values of zeros, one can acquire random
padded triggers of the same size as the input (64 x 64). Note
that such a process is a linear procedure with the trigger as
the input, thus keeping the computational graph the same
even with randomized trigger locations.

Finally, we incorporate a hue change with a 0.3 scale
and a random rotation. To obtain a useful gradient out of
the strong randomized transformations and augmentations
above, we adopt the expectation over transformation (EOT)
technique. EOT is widely used in evasion attacks [43], espe-
cially for adaptively attacking transformation-based defenses
and performing physical-world attacks. By incorporating
EOT, we can synthesize a NARCISSUS patch trigger for the
physical world attack.

B. Evaluation

We consider two baseline triggers in the physical set-
ting: the white square and random noise. We inject the
three triggers (ours, white, and random) into the target-
class training data to form three poisoned datasets. All three
groups use the same poison ratio, 0.05%, with the Tiny-
ImageNet as the target dataset. We remove the comparison
with existing clean-label attacks, LC, HTBA, and SAA, as
they all require access to non-target-class examples. First,
we randomly select 50 images (0.05% of the total data size)
from the target class “bullfrog.” Then, we patch the trigger
with a random rotation to a random location. The poisoned
target models are then obtained by training a ResNet-18
model over the three poisoned datasets. We examine how
the three models react to their corresponding triggers when
they are revealed in the scene, as shown in Fig. 8. All the
triggers are presented on an iPhone 13 with a 6.06” OLED
screen. NARCISSUS is the only one that enables a successful
clean-label backdoor attack in the physical world. The video
demonstration is provided in this link.

(c) Narcissus (Patch) as Trigger

Fig. 8: Different backdoor triggers in a clean-label poison
manner toward physical world. We use ‘bullfrog’ as the target
label. We show the three poisoned models’ behaviors before
and after observing the trigger that initially poisoned the
respective models. The results are screenshots taken from
the video demonstration.

VI. CONCLUSION

In this work, we propose a model-agnostic clean-label

backdoor attack, NARCISSUS, which requires only the knowl-
edge of representative examples from the target-class training
data. Despite the much weaker assumption on the attack
knowledge, our attack demonstrates a state-of-the-art attack
efficacy by manipulating only 0.05% (or even less) of the
training data. Particularly, our attack success rate is 84.09%
to 98.37% higher than existing clean-label backdoor attacks
that rely on the knowledge of the entire training data. It can
also robustly generalize to large datasets and the physical
world. Additionally, the efficacy of our attack is emphasized
in a comprehensive study of state-of-the-art defenses, where,
surprisingly, none of the defenses could fully hinder or
unlearn the NARCISSUS trigger. Our results indicate that
existing popular machine learning pipelines using public
data sources can be easily exposed to practical clean-label
backdoor attacks — as all the attacker requires is knowing a
portion of the target class. This has two broad implications.
Implications for theoretical research. Existing theoretical
characterizations of backdoor attacks have been uniformly
focused on dirty-label attacks [44]. As our method demon-
strates that clean-label attacks can also significantly impair
the integrity of deep neural networks, even at the physical
world scale, we emphasize the importance of studying clean-
label attacks in the same way that dirty-label attacks are
studied [44]. Explanation of why NARCISSUS is more potent,
even with limited knowledge and poison ratio, would be an
intriguing theoretical direction.
Implications for empirical research. Given that our attack
demonstrates a high degree of adaptability and efficacy across
a broad range of environments, most notably by exposing the
vulnerabilities of state-of-the-art defenses [11]-[15], more
robust defenses are needed to respond. Mainly, empirical
research on robustly removing NARCISSUS’s effects without
impairing performance on clean samples is critical.

https://drive.google.com/file/d/1e9iL99hOi3D6UmfjEUjv0lnFAtyrzIWw/view?usp=sharing
https://drive.google.com/file/d/1e9iL99hOi3D6UmfjEUjv0lnFAtyrzIWw/view?usp=sharing

[1]

[2]

[3]

[4]

[5]
[6]
[7]

[8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

(18]
[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

REFERENCES

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” arXiv preprint arXiv:2010.11929, 2020.

M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for con-
volutional neural networks,” in International conference on machine
learning. PMLR, 2019, pp. 6105-6114.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

T. Gu, B. Dolan-Gavitt, and S. Garg, “Badnets: Identifying vulnera-
bilities in the machine learning model supply chain,” arXiv preprint
arXiv:1708.06733, 2017.

X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted backdoor attacks
on deep learning systems using data poisoning,” 2017.

A. Turner, D. Tsipras, and A. Madry, “Label-consistent backdoor
attacks,” 2019.

A. Saha, A. Subramanya, and H. Pirsiavash, “Hidden trigger backdoor
attacks,” in Proceedings of the AAAI Conference on Artificial Intelli-
gence, vol. 34, 2020, pp. 11957-11965.

H. Souri, M. Goldblum, L. Fowl, R. Chellappa, and T. Goldstein,
“Sleeper agent: Scalable hidden trigger backdoors for neural networks
trained from scratch,” arXiv preprint arXiv:2106.08970, 2021.

A. Nguyen and A. Tran, “Wanet—imperceptible warping-based back-
door attack,” arXiv preprint arXiv:2102.10369, 2021.

S. Zhao, X. Ma, X. Zheng, J. Bailey, J. Chen, and Y.-G. Jiang, “Clean-
label backdoor attacks on video recognition models,” 2020.

B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y.
Zhao, “Neural cleanse: Identifying and mitigating backdoor attacks in
neural networks,” in 2019 IEEE Symposium on Security and Privacy
(SP). IEEE, 2019, pp. 707-723.

K. Liu, B. Dolan-Gavitt, and S. Garg, “Fine-pruning: Defending
against backdooring attacks on deep neural networks,” in Interna-
tional Symposium on Research in Attacks, Intrusions, and Defenses.
Springer, 2018, pp. 273-294.

Y. Zeng, S. Chen, W. Park, Z. Mao, M. Jin, and R. Jia, “Adversarial
unlearning of backdoors via implicit hypergradient,” in International
Conference on Learning Representations, 2022.

Y. Li, X. Lyu, N. Koren, L. Lyu, B. Li, and X. Ma, “Anti-backdoor
learning: Training clean models on poisoned data,” Advances in Neural
Information Processing Systems, vol. 34, 2021.

Y. Zeng, W. Park, Z. M. Mao, and R. Jia, “Rethinking the backdoor
attacks’ triggers: A frequency perspective,” in ICCV, 2021.

L. Bottou, “Stochastic gradient descent tricks,” in Neural networks:
Tricks of the trade. Springer, 2012, pp. 421-436.

S. Li, M. Xue, B. Zhao, H. Zhu, and X. Zhang, “Invisible backdoor
attacks on deep neural networks via steganography and regularization,”
IEEE Transactions on Dependable and Secure Computing, 2020.

Y. Li, B. Wu, Y. Jiang, Z. Li, and S.-T. Xia, “Backdoor learning: A
survey,” arXiv preprint arXiv:2007.08745, 2020.

Y. Li, Y. Li, B. Wu, L. Li, R. He, and S. Lyu, “Invisible backdoor
attack with sample-specific triggers,” in ICCV, 2021.

T. A. Nguyen and A. Tran, “Input-aware dynamic backdoor attack,”
Advances in Neural Information Processing Systems, vol. 33, pp.
3454-3464, 2020.

Y. Liu, X. Ma, J. Bailey, and F. Lu, “Reflection backdoor: A natural
backdoor attack on deep neural networks,” in European Conference on
Computer Vision. Springer, 2020, pp. 182—199.

E. Sarkar, H. Benkraouda, and M. Maniatakos, “Facehack: Triggering
backdoored facial recognition systems using facial characteristics,”
arXiv preprint arXiv:2006.11623, 2020.

A. Turner, D. Tsipras, and A. Madry, “Label-consistent backdoor
attacks,” arXiv preprint arXiv:1912.02771, 2019.

C. Qin, J. Martens, S. Gowal, D. Krishnan, K. Dvijotham, A. Fawzi,
S. De, R. Stanforth, and P. Kohli, “Adversarial robustness through local
linearization,” Advances in Neural Information Processing Systems,
vol. 32, 2019.

F. Schomm, F. Stahl, and G. Vossen, “Marketplaces for data: an initial
survey,” ACM SIGMOD Record, vol. 42, no. 1, pp. 15-26, 2013.

S. Cheng, Y. Dong, T. Pang, H. Su, and J. Zhu, “Improving black-box
adversarial attacks with a transfer-based prior,” Advances in neural
information processing systems, vol. 32, 2019.

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[35]

[36]

[37]
[38]

[39]

[40]

[41]
[42]

[43]

[44]

R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in 2017 IEEE
symposium on security and privacy (SP). 1EEE, 2017, pp. 3-18.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances in
neural information processing systems, vol. 32, pp. 8026-8037, 2019.
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770-778.

A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar, “Attribute
and simile classifiers for face verification,” in 2009 IEEE 12th inter-
national conference on computer vision. 1EEE, 2009, pp. 365-372.
Y. Le and X. Yang, “Tiny imagenet visual recognition challenge,” CS
23IN, vol. 7, no. 7, p. 3, 2015.

Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes
in the wild,” in Proceedings of International Conference on Computer
Vision (ICCV), December 2015.

G. Griffin, A. Holub, and P. Perona, “Caltech-256 object category
dataset,” 2007.

S. Ruder, “An overview of gradient descent optimization algorithms,”
arXiv preprint arXiv:1609.04747, 2016.

L. Liu, H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and J. Han, “On
the variance of the adaptive learning rate and beyond,” arXiv preprint
arXiv:1908.03265, 2019.

1. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent with
warm restarts,” arXiv preprint arXiv:1608.03983, 2016.

Y. Li, T. Zhai, Y. Jiang, Z. Li, and S.-T. Xia, “Backdoor attack in the
physical world,” in ICLR Workshop, 2021.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2015, pp. 1-9.

W. Guo, L. Wang, X. Xing, M. Du, and D. Song, “Tabor: A highly
accurate approach to inspecting and restoring trojan backdoors in ai
systems,” arXiv preprint arXiv:1908.01763, 2019.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv
preprint arXiv:1605.07146, 2016.

A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok, “Synthesizing
robust adversarial examples,” in International conference on machine
learning. PMLR, 2018, pp. 284-293.

N. Manoj and A. Blum, “Excess capacity and backdoor poisoning,”
Advances in Neural Information Processing Systems, vol. 34, 2021.

	Introduction
	Background and Related Work
	Supervised Machine Learning
	Backdoor Attacks

	Methodology
	Threat Model
	Problem Formulation
	Attack Workflow

	Evaluation
	Experimental Setup
	Attack Performance
	Comparison of attack effectiveness
	Impact of target-class poison ratio

	Ablation Study
	Impact of surrogate-target model mismatch
	Impact of l-norm ball radius
	Poi-warm-up fine-tuning & Trigger generation iterations

	Defenses
	Model-based Backdoor Unlearning
	Model-agnostic Backdoor Detection
	Robust Training over Poisoned Dataset

	Extension to Physical-World Attack
	Attack Design
	Evaluation

	Conclusion
	References

